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In this paper, using Cohen’s and Tangedal and Young’s 
theory on the p-adic Hurwitz zeta functions, we construct the 
analytic Dedekind sums on the p-adic complex plane Cp. We 
show that these Dedekind sums interpolate Carlitz’s higher 
order Dedekind sums p-adically. From Apostol’s reciprocity 
law for the generalized Dedekind sums, we also prove a 
reciprocity relation for the special values of these p-adic 
Dedekind sums. Finally, the parallel results for the analytic 
Dedekind sums on the p-adic complex plane associated with 
Euler polynomials have also been given.
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1. Introduction

Throughout this paper, we shall use the following notations.

C − the field of complex numbers.

p − a prime number.

Zp − the ring of p-adic integers.

Qp − the field of fractions of Zp.

Cp − the completion of a fixed algebraic closure Qp of Q.

vp − the p-adic valuation of Cp normalized so that |p|p = p−vp(p) = p−1.

For arbitrary real numbers x, [x] denotes the greatest integer not exceeding x and {x}
denotes the fractional part of real number x, thus

{x} = x− [x]. (1.1)

For positive integer h and integer k, the classical Dedekind sum is defined as

s(h, k) =
∑

a (mod k)

((ha
k

))((a
k

))
, (1.2)

where ((x)) denotes

((x)) =
{
x− [x] − 1

2 if x /∈ Z,

0 if x ∈ Z.

This sum appears in the transformation formula of log η(τ). Here η(τ) is the well-known 
modular form of weight 1

2 , defined for Im τ > 0, by

η(τ) = e
πiτ
12

∞∏
n=1

(1 − e2πinτ ).

(See [2, p. 52, Theorem 3.4]).
In 1950, Apostol [1] generalized s(h, k) by defining

s(1)
m (h, k) =

k−1∑
a=0

Bm

(
ha

k

)
B1

(a
k

)
, (1.3)

where Bm (x) is the m-th Bernoulli function defined by

Bm(x) = Bm({x}) for m > 1 and B1(x) = ((x)). (1.4)



Download English Version:

https://daneshyari.com/en/article/6415280

Download Persian Version:

https://daneshyari.com/article/6415280

Daneshyari.com

https://daneshyari.com/en/article/6415280
https://daneshyari.com/article/6415280
https://daneshyari.com

