

Contents lists available at ScienceDirect

Journal of Number Theory

The p-adic analytic Dedekind sums

Su Hu^a, Min-Soo Kim^{b,*}

^a Department of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, China

ARTICLE INFO

Article history: Received 16 April 2016 Received in revised form 14 July 2016 Accepted 15 July 2016 Available online 6 September 2016 Communicated by D. Goss

MSC: 11F20 11B68 11S80 11M35

Keywords: p-adic integral p-adic Hurwitz zeta function Dedekind sum Bernoulli polynomial Euler polynomial

ABSTRACT

In this paper, using Cohen's and Tangedal and Young's theory on the p-adic Hurwitz zeta functions, we construct the analytic Dedekind sums on the p-adic complex plane \mathbb{C}_p . We show that these Dedekind sums interpolate Carlitz's higher order Dedekind sums p-adically. From Apostol's reciprocity law for the generalized Dedekind sums, we also prove a reciprocity relation for the special values of these p-adic Dedekind sums. Finally, the parallel results for the analytic Dedekind sums on the p-adic complex plane associated with Euler polynomials have also been given.

© 2016 Elsevier Inc. All rights reserved.

E-mail addresses: mahusu@scut.edu.cn (S. Hu), mskim@kyungnam.ac.kr (M.-S. Kim).

^b Center for General Education, Kyungnam University, 7(Woryeong-dong) kyungnamdaehak-ro, Masanhappo-gu, Changwon-si, Gyeongsangnam-do 631-701, Republic of Korea

^{*} Corresponding author.

1. Introduction

Throughout this paper, we shall use the following notations.

 \mathbb{C} — the field of complex numbers.

p — a prime number.

 \mathbb{Z}_p — the ring of *p*-adic integers.

 \mathbb{Q}_p — the field of fractions of \mathbb{Z}_p .

 \mathbb{C}_p — the completion of a fixed algebraic closure $\overline{\mathbb{Q}}_p$ of \mathbb{Q} .

 v_p - the p-adic valuation of \mathbb{C}_p normalized so that $|p|_p = p^{-v_p(p)} = p^{-1}$.

For arbitrary real numbers x, [x] denotes the greatest integer not exceeding x and $\{x\}$ denotes the fractional part of real number x, thus

$$\{x\} = x - [x]. \tag{1.1}$$

For positive integer h and integer k, the classical Dedekind sum is defined as

$$s(h,k) = \sum_{\substack{a \pmod k}} \left(\left(\frac{ha}{k} \right) \right) \left(\left(\frac{a}{k} \right) \right), \tag{1.2}$$

where ((x)) denotes

$$((x)) = \begin{cases} x - [x] - \frac{1}{2} & \text{if } x \notin \mathbb{Z}, \\ 0 & \text{if } x \in \mathbb{Z}. \end{cases}$$

This sum appears in the transformation formula of $\log \eta(\tau)$. Here $\eta(\tau)$ is the well-known modular form of weight $\frac{1}{2}$, defined for Im $\tau > 0$, by

$$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \prod_{n=1}^{\infty} (1 - e^{2\pi i n \tau}).$$

(See [2, p. 52, Theorem 3.4]).

In 1950, Apostol [1] generalized s(h, k) by defining

$$s_m^{(1)}(h,k) = \sum_{a=0}^{k-1} \overline{B}_m \left(\frac{ha}{k}\right) \overline{B}_1 \left(\frac{a}{k}\right), \tag{1.3}$$

where $\overline{B}_{m}\left(x\right)$ is the m-th Bernoulli function defined by

$$\overline{B}_m(x) = B_m(\lbrace x \rbrace) \text{ for } m > 1 \text{ and } \overline{B}_1(x) = ((x)).$$
 (1.4)

Download English Version:

https://daneshyari.com/en/article/6415280

Download Persian Version:

https://daneshyari.com/article/6415280

<u>Daneshyari.com</u>