

Contents lists available at ScienceDirect

Journal of Number Theory

A group-invariant version of Lehmer's conjecture on heights

Jan-Willem M. van Ittersum

Mathematisch Instituut, Universiteit Utrecht, Postbus 80.010, 3508 TA Utrecht, The Netherlands

ARTICLE INFO

Article history:
Received 23 February 2016
Received in revised form 10 July 2016
Accepted 19 July 2016
Available online 6 September 2016
Communicated by D. Goss

MSC: 11G50

11R04 11R06

12D10

Keywords: Lehmer's conjecture Mahler measure Weil height

G-orbit height

ABSTRACT

We state and prove a group-invariant version of Lehmer's conjecture on heights, generalizing papers by Zagier (1993) [5] and Dresden (1998) [1] which are special cases of this theorem. We also extend their three cases to a full classification of all finite cyclic groups satisfying the condition that the set of all orbits for which every non-zero element lies on the unit circle is finite and non-empty.

© 2016 Elsevier Inc. All rights reserved.

1. A Lehmer-type problem for the Weil height

The Mahler measure of a non-zero polynomial $f \in \mathbb{Z}[x]$ given by

$$f(x) = a_n \prod_{i=1}^{n} (x - \alpha_i)$$
(1)

E-mail address: j.w.m.vanittersum@uu.nl.

is defined as

$$M(f) = |a_n| \prod_{i=1}^n \max(|\alpha_i|, 1).$$

In 1933, Lehmer asked whether there exists a lower bound D > 1 such that for all $f \in \mathbb{Z}[x]$ it holds that

$$M(f) = 1$$
 or $M(f) \ge D$.

He showed that if such a D exists, then $D \le 1.1762808...$, the largest real root of the polynomial $x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1$ [4]. Nowadays, this is still the smallest known value of M(f) > 1 for $f \in \mathbb{Z}[x]$.

Mahler's measure is related to the Weil height of an algebraic number. Let K be an algebraic number field and v a place of K. We assume that this v-adic valuation is normalized in such a way that for all non-zero $\alpha \in K$ the product of $|\alpha|_v$ over all places v is equal to 1 and the product of $|\alpha|_v$ over all Archimedean v is equal to the absolute value of $N_{K/\mathbb{Q}}(\alpha)$. Then, for $\alpha \in K^*$ the (logarithmic) Weil height h is defined by

$$h(\alpha) = \frac{1}{[K:\mathbb{Q}]} \sum_{v} \log^{+} |\alpha|_{v},$$

where the sum is over all places v of K. We used the notation $\log^+(z)$ to refer to $\log \max(z,1)$ for $z \in \mathbb{R}$. The Weil height is independent of K and if the polynomial (1) is the minimal polynomial of α over \mathbb{Q} , then $h(\alpha) = \frac{1}{n} \log M(f)$. This Weil height can be extended to $\mathbb{P}^1(\overline{\mathbb{Q}})$. Namely, for $x = [x_1 : x_2] \in \mathbb{P}^1(\overline{\mathbb{Q}})$, we define

$$h(x) = \frac{1}{[K:\mathbb{Q}]} \sum_{v} \log \max(|x_1|_v, |x_2|_v),$$

where K is chosen such that $x_1, x_2 \in K$. Note that $h(x) \geq 0$.

Definition 1. Let G be a finite subgroup of $\operatorname{PGL}_2(\mathbb{Q})$. The G-orbit height of $x \in \mathbb{P}^1(\overline{\mathbb{Q}})$ is defined as

$$h_G(x) = \sum_{\sigma \in G} h(\sigma x).$$

Note that $h_G(x) \geq 0$ and $h_G(\sigma\alpha) = h_G(\alpha)$ for all $\sigma \in G$. We can now state the *G-invariant Lehmer problem*, namely: given a finite group G does there exist a positive lower bound D such that

$$h_G(x) = 0$$
 or $h_G(x) \ge D$ (2)

Download English Version:

https://daneshyari.com/en/article/6415283

Download Persian Version:

https://daneshyari.com/article/6415283

Daneshyari.com