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1. Introduction

Stirling’s formula

nl ~2mn (ﬁ)n (1.1)

e
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has many applications in statistical physics, probability theory and number theory. Ac-
tually it was discovered by A. De Moivre (1667-1754) in the form

nl~ C - v/alnfe)",

and Stirling (1692-1770) identified the constant C' precisely v/27. Stirling’s formula has
attracted much interest of many mathematicians and has motivated a large number
of research papers concerning various generalizations and improvements (see [4-14,16,
18-35,37,38,41] and the references cited therein).

The following asymptotic formulas are well-known for the gamma function (see, for
example, [1, p. 257]):
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(r — o0) (Stirling series) (1.2)
and
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where B,, (n € Ny := NU{0}), N:= {1,2,...}) are the nth Bernoulli numbers defined
by the following generating function (see, for example, [39, Section 1.7]):

z > z"
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n=0

eZ
The Laplace formula (1.3) is sometimes incorrectly called Stirling series (see [15,
pp. 2-3)).
Stirling’s formula is in fact the first approximation to the asymptotic formula (1.3). In-
spired by (1.1), Burnside [8] found a slightly more accurate approximation than Stirling’s
formula as follows:

n+i
+3\ °
nl ~ V21 (" 2) . (1.4)
e
The formula (1.4) was rediscovered by Weissman [41], Spouge [38] and Schuster [37].
By replacing in the Stirling’s formula v/2n by (8n3 +4n? +n+ %) 1/6, Ramanujan [36,
p. 339] presented the following approximation:
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