Patterns in numbers and infinite sums and products

Yining Hu
CNRS, Institut de Mathématiques de Jussieu-PRG, Université Pierre et Marie Curie, Case 247, 4 Place Jussieu, F-75252 Paris Cedex 05, France

A R T I C L E I N F O

Article history:

Received 23 May 2015
Received in revised form 29
September 2015
Accepted 29 September 2015
Available online 2 December 2015
Communicated by David Goss
Keywords:
Infinite product
Infinite sum
Patterns in numbers
Block counting functions
B-ary expansion

A B S T R A C T

Text. Let $a_{w, B}(n)$ denote the number of occurrences of the word w in the base B expansion of the non-negative integer n. In this article we generalize the results of Allouche and Shallit [2] by proving the existence of a finite set $L_{w, B}$ of pairs $\left(l, c_{l}\right)$ where l is a polynomial with integer coefficients of degree 1 and c_{l} an integer such that:

$$
\begin{aligned}
& \sum_{n \geq 0}(-1)^{a_{w, B}(n)} \sum_{\left(l, c_{l}\right) \in L_{w, B}} c_{l} f(l(n)) \\
& = \begin{cases}0 & \text { if } w \neq 0^{j}, \\
-2 \cdot(-1)^{a_{w, B}(0)} f(0) & \text { if } w=0^{j}\end{cases}
\end{aligned}
$$

where f is any function that verifies certain convergence conditions.
After exponentiating, we recover previous results and obtain new ones such as

$$
\prod_{n \geq 1}\left(\frac{3 n+1}{3 n+2}\right)^{(-1)^{n}}=\frac{2}{\sqrt{3}}
$$

and

$$
\prod_{n \geq 1}\left(\frac{9 n+7}{9 n+8}\right)^{(-1)^{a_{21,3}(n)}}=\frac{8}{7 \sqrt{3}}
$$

Video. For a video summary of this paper, please visit https://youtu.be/0wXL7xPkooc.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let $s_{q}(n)$ denote the sum of digits of the non-negative integer n when written in base q. Woods and Robbins [6,7] proved that

$$
\begin{equation*}
\prod_{n \geq 0}\left(\frac{2 n+1}{2 n+2}\right)^{(-1)^{s_{2}(n)}}=\frac{\sqrt{2}}{2} \tag{1}
\end{equation*}
$$

Allouche and Shallit [2] looked at the function $a_{w}(n)$, defined as the number of occurrences of the finite non-empty binary word w in the binary expansion of n. With this notation the $s_{2}(n)$ in Equation (1) becomes $(-1)^{a_{1}(n)}$. With the following two theorems, they generalized the result to $a_{w}(n)$ for all w.

Theorem 1. (See Allouche and Shallit [2].) Let w be a string of zeros and ones, and

$$
g=2^{|w|-1}, \quad h=\lfloor v(w) / 2\rfloor,
$$

and let X be a complex number with $|X| \leq 1$ and $X \neq 1$. Then

$$
\sum_{n} X^{a_{w}(g n+h)} L(2 g n+v(w))=-\frac{1}{1-X}
$$

where the sum is over $n \geq 1$ for $w=0^{j}$ and $n \geq 0$ otherwise.
Theorem 2. (See Allouche and Shallit [2].) There is an effectively computable rational function $b_{w}(n)$ such that, for all $X \neq 1$ with $|X| \leq 1$, we have

$$
\begin{equation*}
\sum_{n} \log _{2}\left(b_{w}(n)\right) X^{a_{w}(n)}=-\frac{1}{1-X} \tag{2}
\end{equation*}
$$

where the sum is over $n \geq 1$ for $w=0^{j}$ and $n \geq 0$ otherwise.

By setting $X=-1, w=1$ in equation (2) and exponentiating we rediscover equation (1). Other values of w give new results; for example,

$$
\begin{equation*}
\prod_{n \geq 0}\left(\frac{(4 n+2)(8 n+7)(8 n+3)(16 n+10)}{(4 n+3)(8 n+6)(8 n+2)(16 n+11)}\right)^{(-1)^{a_{1010}(n)}}=\frac{\sqrt{2}}{2} \tag{3}
\end{equation*}
$$

https://daneshyari.com/en/article/6415378

Download Persian Version:

https://daneshyari.com/article/6415378

Daneshyari.com

