Applications of stuffle product of multiple zeta values

Kwang-Wu Chen
Department of Mathematics, University of Taipei, No. 1, Ai-Guo West Road, Taipei 10048, Taiwan, ROC

A R T I C L E I N F O

Article history:

Received 17 November 2014
Received in revised form 26 January 2015
Accepted 27 January 2015
Available online 5 March 2015
Communicated by David Goss

MSC:

11M32
05A15
Keywords:
Multiple zeta value
Stuffle product
Delannoy number

A B S T R A C T

We obtain some formulas for the stuffle product and apply them to derive a decomposition formula for multiple zeta values. Moreover, we give an application to combinatorics and get the following identity:

$$
\begin{aligned}
& D(n+1, t+1)+D(n, t) \\
& \quad=2 \sum_{\ell=0}^{n} D(t, n-\ell)+2 \sum_{\ell=0}^{t} D(n, t-\ell)
\end{aligned}
$$

where $D(n, t)$ is the Delannoy number.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The multiple zeta value (MZV) is defined by

$$
\zeta(\boldsymbol{\alpha})=\sum_{n_{1}>n_{2}>\cdots>n_{r}>0} n_{1}^{-\alpha_{1}} n_{2}^{-\alpha_{2}} \cdots n_{r}^{-\alpha_{r}}
$$

E-mail address: kwchen@uTaipei.edu.tw.
http://dx.doi.org/10.1016/j.jnt.2015.01.003
0022-314X/© 2015 Elsevier Inc. All rights reserved.
where $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ is an r-tuple of positive integers with $\alpha_{1} \geq 2$. The number r is called the depth of $\zeta(\boldsymbol{\alpha})$ and $|\boldsymbol{\alpha}|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{r}$ is called the weight of $\zeta(\boldsymbol{\alpha})$. For convenience, we write $\{s\}^{k}$ to be k repetitions of s, for example, $\zeta\left(\{s\}^{3}\right)=\zeta(s, s, s)$, and in particular $\zeta\left(t,\{s\}^{0}\right)=\zeta(t)$.

Recently multiple zeta values (MZVs) and their generalizations have attracted much attention, both in pure mathematics and theoretical physics (see [3]). A systematic study only started in the early 1990s, although the prehistory can be traced back to Euler in the 18th century.

A principal goal in the theoretical study of MZVs is to determine all possible algebraic relations among them. Several explicit values are interesting and known for special index sets (e.g. [1,2,9,10]). For example, Zagier [10] evaluated the value of $\zeta\left(\{2\}^{a}, 3,\{2\}^{b}\right)$ and T. Arakawa and M. Kaneko (ref. [9, Theorem 1]) evaluated the value of $\zeta\left(\{2 n\}^{m}\right)$.

Let us consider the coding of multi-indices $\vec{s}=\left(s_{1}, \ldots, s_{k}\right), s_{i}$ are positive integers and $s_{1}>1$, by words (that is, by monomials in non-commutative variables) over the alphabet $X=\{x, y\}$ by the rule

$$
\vec{s} \mapsto x_{\vec{s}}=x^{s_{1}-1} y x^{s_{2}-1} y \cdots x^{s_{k}-1} y
$$

We set

$$
\zeta\left(x_{\vec{s}}\right):=\zeta(\vec{s})
$$

for all admissible words (that is, beginning with x and ending with y); then the weight (or the degree) $\left|x_{\vec{s}}\right|:=|\vec{s}|$ coincides with the total degree of the monomial $x_{\vec{s}}$, whereas the length (or the depth) $l\left(x_{\vec{s}}\right):=l(\vec{s})$ is the degree with respect to the variable y.

Let $\mathbb{Q}\langle X\rangle=\mathbb{Q}\langle x, y\rangle$ be the \mathbb{Q}-algebra of polynomials in two non-commutative variables which is graded by the degree (where each of the variables x and y is assumed to be of degree 1); we identify the algebra $\mathbb{Q}\langle X\rangle$ with the graded \mathbb{Q}-vector space \mathfrak{H} spanned by the monomials in the variables x and y (see [7]).

We also introduce the graded \mathbb{Q}-vector spaces $\mathfrak{H}^{1}=\mathbb{Q} \mathbf{1} \bigoplus \mathfrak{H} y$ and $\mathfrak{H}^{0}=\mathbb{Q} \mathbf{1} \bigoplus x \mathfrak{H} y$, where $\mathbf{1}$ denotes the unit (the empty word of weight 0 and length 0) of the algebra $\mathbb{Q}\langle X\rangle$. Then the space \mathfrak{H}^{1} can be regarded as the subalgebra of $\mathbb{Q}\langle X\rangle$ generated by the words $z_{s}=x^{s-1} y$, whereas \mathfrak{H}^{0} is the \mathbb{Q}-vector space spanned by all admissible words.

Let us define the shuffle product ш on \mathfrak{H} and the stuffle product $*$ (the harmonic product) on \mathfrak{H}^{1} by the rules

$$
\begin{equation*}
\mathbf{1} \amalg w=w ш \mathbf{1}=w, \quad \mathbf{1} * w=w * \mathbf{1}=w \tag{1}
\end{equation*}
$$

for any word w, and

$$
\begin{align*}
x_{1} u \amalg x_{2} v & =x_{1}\left(u \amalg x_{2} v\right)+x_{2}\left(x_{1} u \amalg v\right), \tag{2}\\
z_{j} u * z_{k} v & =z_{j}\left(u * z_{k} v\right)+z_{k}\left(z_{j} u * v\right)+z_{j+k}(u * v) \tag{3}
\end{align*}
$$

https://daneshyari.com/en/article/6415392

Download Persian Version:
https://daneshyari.com/article/6415392

Daneshyari.com

