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1. Introduction

Let n be a positive integer, and let
Sp(l)=1"+2" 4+ 4+ (L-1)"

be the power sum of the first {—1 positive integers. It is well known that S, (¢) is strongly
related to the Bernoulli polynomials B, (z) in the following way

1

S0 =T

(Bn+1(£) - Bn+1)a
where the polynomials By, (z) are defined by the generating series

tetr
t

et—1 kZ:OBk(x)E

and B,, = B,(0) is the nth Bernoulli number.
It is possible to find the explicit coefficients of £ in S, (¢) [9]:

n+1 n
Su(t)=>_ ¢ (ng(n, k)sl(kﬂ,@)k%l), (1)
=0 k=0

where S1(n, k) and Sz(n, k) are the (signed) Stirling numbers of the first and second
kind, respectively.
Recently, Bazsé et al. [1] considered the more general power sum

Spal) =r"+(m+7r)"+ 2m+7r)" +-+ (= m+7r)",

where m # 0, r are coprime integers. Obviously, ST ((¢) = Sn(f). They, among other
things, proved that S, .(¢) is a polynomial of £ with the explicit expression

m’ﬂ

5201012 205 (B (14.2) - s (3). >

In [12], using a different approach, Howard also obtained the above relation via generating

functions. Hirschhorn [11] and Chapman [5] deduced a more difficult expression which
contains only binomial coefficients and Bernoulli numbers.

For some related diophantine results on Sy, .(¢) see [3,10,15,16,2] and the references
given there.

Our goal is to give the explicit form of the coefficients of the polynomial anm(f), thus
generalizing (1). In this expression the Stirling numbers of the first kind also will appear,
but, in place of the Stirling numbers of the second kind a more general class of numbers
arises, the so-called r-Whitney numbers introduced by the second author [13].
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