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We investigate the coefficients of the polynomial

Sn
m,r(�)= rn + (m + r)n + (2m + r)n + · · · + ((�− 1)m + r)n.

We prove that these can be given in terms of Stirling numbers 
of the first kind and r-Whitney numbers of the second kind. 
Moreover, we prove a necessary and sufficient condition for 
the integrity of these coefficients.
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1. Introduction

Let n be a positive integer, and let

Sn(�) = 1n + 2n + · · · + (�− 1)n

be the power sum of the first � −1 positive integers. It is well known that Sn(�) is strongly 
related to the Bernoulli polynomials Bn(x) in the following way

Sn(�) = 1
n + 1(Bn+1(�) −Bn+1),

where the polynomials Bn(x) are defined by the generating series

tetx

et − 1 =
∞∑
k=0

Bk(x) t
k

k!

and Bn = Bn(0) is the nth Bernoulli number.
It is possible to find the explicit coefficients of � in Sn(�) [9]:

Sn(�) =
n+1∑
i=0

�i

(
n∑

k=0

S2(n, k)S1(k + 1, i) 1
k + 1

)
, (1)

where S1(n, k) and S2(n, k) are the (signed) Stirling numbers of the first and second 
kind, respectively.

Recently, Bazsó et al. [1] considered the more general power sum

Sn
m,r(�) = rn + (m + r)n + (2m + r)n + · · · + ((�− 1)m + r)n,

where m �= 0, r are coprime integers. Obviously, Sn
1,0(�) = Sn(�). They, among other 

things, proved that Sn
m,r(�) is a polynomial of � with the explicit expression

Sn
m,r(�) = mn

n + 1

(
Bn+1

(
� + r

m

)
−Bn+1

( r

m

))
. (2)

In [12], using a different approach, Howard also obtained the above relation via generating 
functions. Hirschhorn [11] and Chapman [5] deduced a more difficult expression which 
contains only binomial coefficients and Bernoulli numbers.

For some related diophantine results on Sn
m,r(�) see [3,10,15,16,2] and the references 

given there.
Our goal is to give the explicit form of the coefficients of the polynomial Sn

m,r(�), thus 
generalizing (1). In this expression the Stirling numbers of the first kind also will appear, 
but, in place of the Stirling numbers of the second kind a more general class of numbers 
arises, the so-called r-Whitney numbers introduced by the second author [13].
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