

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

On the coefficients of power sums of arithmetic progressions

András Bazsó^{a,1}, István Mező^{b,2}

^a Institute of Mathematics, MTA-DE Research Group "Equations, Functions and Curves", Hungarian Academy of Sciences and University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary

^b Department of Mathematics, Nanjing University of Information Science and Technology, No. 219 Ningliu Rd., Pukou, Nanjing, Jiangsu, PR China

ARTICLE INFO

Article history: Received 7 October 2014 Accepted 28 January 2015 Available online 5 March 2015 Communicated by Michael E. Pohst

MSC: 11B25 11B68 11B73

Keywords: Arithmetic progressions Power sums Stirling numbers *r*-Whitney numbers Bernoulli polynomials

АВЅТ КАСТ

We investigate the coefficients of the polynomial

 $S_{m,r}^{n}(\ell) = r^{n} + (m+r)^{n} + (2m+r)^{n} + \dots + ((\ell-1)m+r)^{n}.$

We prove that these can be given in terms of Stirling numbers of the first kind and r-Whitney numbers of the second kind. Moreover, we prove a necessary and sufficient condition for the integrity of these coefficients.

@ 2015 Elsevier Inc. All rights reserved.

 $\label{eq:http://dx.doi.org/10.1016/j.jnt.2015.01.019} 0022-314 X (© 2015 Elsevier Inc. All rights reserved.$

E-mail addresses: bazsoa@science.unideb.hu (A. Bazsó), istvanmezo81@gmail.com (I. Mező).

 $^{^{1}}$ The first author was supported by the Hungarian Academy of Sciences and by the OTKA grant NK104208.

² The research of István Mező was supported by the Scientific Research Foundation of Nanjing University of Information Science & Technology, and The Startup Foundation for Introducing Talent of NUIST, Project no.: S8113062001.

1. Introduction

Let n be a positive integer, and let

$$S_n(\ell) = 1^n + 2^n + \dots + (\ell - 1)^n$$

be the power sum of the first $\ell - 1$ positive integers. It is well known that $S_n(\ell)$ is strongly related to the Bernoulli polynomials $B_n(x)$ in the following way

$$S_n(\ell) = \frac{1}{n+1}(B_{n+1}(\ell) - B_{n+1}),$$

where the polynomials $B_n(x)$ are defined by the generating series

$$\frac{te^{tx}}{e^t - 1} = \sum_{k=0}^{\infty} B_k(x) \frac{t^k}{k!}$$

and $B_n = B_n(0)$ is the *n*th Bernoulli number.

It is possible to find the explicit coefficients of ℓ in $S_n(\ell)$ [9]:

$$S_n(\ell) = \sum_{i=0}^{n+1} \ell^i \left(\sum_{k=0}^n S_2(n,k) S_1(k+1,i) \frac{1}{k+1} \right), \tag{1}$$

where $S_1(n,k)$ and $S_2(n,k)$ are the (signed) Stirling numbers of the first and second kind, respectively.

Recently, Bazsó et al. [1] considered the more general power sum

$$S_{m,r}^{n}(\ell) = r^{n} + (m+r)^{n} + (2m+r)^{n} + \dots + ((\ell-1)m+r)^{n},$$

where $m \neq 0$, r are coprime integers. Obviously, $S_{1,0}^n(\ell) = S_n(\ell)$. They, among other things, proved that $S_{m,r}^n(\ell)$ is a polynomial of ℓ with the explicit expression

$$S_{m,r}^{n}(\ell) = \frac{m^{n}}{n+1} \left(B_{n+1} \left(\ell + \frac{r}{m} \right) - B_{n+1} \left(\frac{r}{m} \right) \right).$$
(2)

In [12], using a different approach, Howard also obtained the above relation via generating functions. Hirschhorn [11] and Chapman [5] deduced a more difficult expression which contains only binomial coefficients and Bernoulli numbers.

For some related diophantine results on $S_{m,r}^n(\ell)$ see [3,10,15,16,2] and the references given there.

Our goal is to give the explicit form of the coefficients of the polynomial $S_{m,r}^n(\ell)$, thus generalizing (1). In this expression the Stirling numbers of the first kind also will appear, but, in place of the Stirling numbers of the second kind a more general class of numbers arises, the so-called *r*-Whitney numbers introduced by the second author [13].

Download English Version:

https://daneshyari.com/en/article/6415393

Download Persian Version:

https://daneshyari.com/article/6415393

Daneshyari.com