On the coefficients of power sums of arithmetic progressions

András Bazsó ${ }^{\text {a,1 }}$, István Mező ${ }^{\text {b,2 }}$
${ }^{\text {a }}$ Institute of Mathematics, MTA-DE Research Group "Equations, Functions and Curves", Hungarian Academy of Sciences and University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary
b Department of Mathematics, Nanjing University of Information Science and Technology, No. 219 Ningliu Rd., Pukou, Nanjing, Jiangsu, PR China

A R T I C L E I N F O

Article history:

Received 7 October 2014
Accepted 28 January 2015
Available online 5 March 2015
Communicated by Michael E. Pohst

MSC:

11B25
11B68
11B73
Keywords:
Arithmetic progressions
Power sums
Stirling numbers
r-Whitney numbers
Bernoulli polynomials

A B S T R A C T
We investigate the coefficients of the polynomial
$S_{m, r}^{n}(\ell)=r^{n}+(m+r)^{n}+(2 m+r)^{n}+\cdots+((\ell-1) m+r)^{n}$.
We prove that these can be given in terms of Stirling numbers of the first kind and r-Whitney numbers of the second kind. Moreover, we prove a necessary and sufficient condition for the integrity of these coefficients.
© 2015 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let n be a positive integer, and let

$$
S_{n}(\ell)=1^{n}+2^{n}+\cdots+(\ell-1)^{n}
$$

be the power sum of the first $\ell-1$ positive integers. It is well known that $S_{n}(\ell)$ is strongly related to the Bernoulli polynomials $B_{n}(x)$ in the following way

$$
S_{n}(\ell)=\frac{1}{n+1}\left(B_{n+1}(\ell)-B_{n+1}\right)
$$

where the polynomials $B_{n}(x)$ are defined by the generating series

$$
\frac{t e^{t x}}{e^{t}-1}=\sum_{k=0}^{\infty} B_{k}(x) \frac{t^{k}}{k!}
$$

and $B_{n}=B_{n}(0)$ is the nth Bernoulli number.
It is possible to find the explicit coefficients of ℓ in $S_{n}(\ell)$ [9]:

$$
\begin{equation*}
S_{n}(\ell)=\sum_{i=0}^{n+1} \ell^{i}\left(\sum_{k=0}^{n} S_{2}(n, k) S_{1}(k+1, i) \frac{1}{k+1}\right) \tag{1}
\end{equation*}
$$

where $S_{1}(n, k)$ and $S_{2}(n, k)$ are the (signed) Stirling numbers of the first and second kind, respectively.

Recently, Bazsó et al. [1] considered the more general power sum

$$
S_{m, r}^{n}(\ell)=r^{n}+(m+r)^{n}+(2 m+r)^{n}+\cdots+((\ell-1) m+r)^{n}
$$

where $m \neq 0, r$ are coprime integers. Obviously, $S_{1,0}^{n}(\ell)=S_{n}(\ell)$. They, among other things, proved that $S_{m, r}^{n}(\ell)$ is a polynomial of ℓ with the explicit expression

$$
\begin{equation*}
S_{m, r}^{n}(\ell)=\frac{m^{n}}{n+1}\left(B_{n+1}\left(\ell+\frac{r}{m}\right)-B_{n+1}\left(\frac{r}{m}\right)\right) . \tag{2}
\end{equation*}
$$

In [12], using a different approach, Howard also obtained the above relation via generating functions. Hirschhorn [11] and Chapman [5] deduced a more difficult expression which contains only binomial coefficients and Bernoulli numbers.

For some related diophantine results on $S_{m, r}^{n}(\ell)$ see $[3,10,15,16,2]$ and the references given there.

Our goal is to give the explicit form of the coefficients of the polynomial $S_{m, r}^{n}(\ell)$, thus generalizing (1). In this expression the Stirling numbers of the first kind also will appear, but, in place of the Stirling numbers of the second kind a more general class of numbers arises, the so-called r-Whitney numbers introduced by the second author [13].

https://daneshyari.com/en/article/6415393

Download Persian Version:

https://daneshyari.com/article/6415393

Daneshyari.com

[^0]: E-mail addresses: bazsoa@science.unideb.hu (A. Bazsó), istvanmezo81@gmail.com (I. Mező).
 1 The first author was supported by the Hungarian Academy of Sciences and by the OTKA grant NK104208.
 2 The research of István Mező was supported by the Scientific Research Foundation of Nanjing University of Information Science \& Technology, and The Startup Foundation for Introducing Talent of NUIST, Project no.: S8113062001.

