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Let m, n, k and c be positive integers, ν2(k) be the 2-adic 
valuation of k and S(n, k) be the Stirling numbers of the 
second kind. We show that if 2 ≤ m ≤ n and c is odd, then 
ν2(S(c2n+1, 2m − 1) − S(c2n, 2m − 1)) = n + 1 except when 
n = m = 2 and c = 1, in which case ν2(S(8, 3) − S(4, 3)) = 6. 
This solves a conjecture of Lengyel proposed in 2009.
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1. Introduction

Let N denote the set of nonnegative integers and let n, k ∈ N. The Stirling numbers 
of the second kind S(n, k) are defined as the number of ways to partition a set of n
elements into exactly k non-empty subsets. There hold the explicit formula S(n, k) =
1
k!
∑k

i=0(−1)i
(
k
i

)
(k−i)n and the recurrence relation S(n, k) = S(n −1, k−1) +kS(n −1, k)

with initial condition S(0, 0) = 1 and S(n, 0) = 0 for n > 0. Further, the generating 
functions (ex−1)k = k! 

∑∞
j=k S(j, k)x

j

j! and 
∏k

i=1
1

1−ix =
∑∞

j=0 S(j+k, k)xj are satisfied.
Given a prime p and a positive integer m, there exist unique integers a and n, with p � a
and n ≥ 0, such that m = apn. The number n is called p-adic valuation of m, denoted 
by n = vp(m). The study of p-adic valuations of Stirling numbers of the second kind 
is important in algebraic topology and full with challenging problems (see, for instance, 
[1–7,10–12,14]). Lengyel [11] conjectured that if n, k, a, b ∈ N with 3 ≤ k ≤ 2n, then 
ν2(S(a2n, k) − S(b2n, k)) = n + 1 + ν2(a − b) − f(k) for some function f(k) which is 
independent of n (for any sufficiently large n). Lengyel [11] showed that this conjecture 
is true if s2(k) ≤ 2 and k > 3. Zhao, Hong and Zhao [14] used Junod’s congruence [8] to 
show this conjecture except when k is a power of 2 minus 1, in which case this conjecture 
is still kept open so far. It is noted in [14] that the techniques there are not suitable for 
treating with the remaining case that k is a power of 2 minus 1. Meanwhile, Lengyel [11]
suggested another conjecture saying that for any c, m, n ∈ N with c ≥ 1 being odd and 
2 ≤ m ≤ n, one has ν2(S(c2n+1, 2m − 1) −S(c2n, 2m − 1)) = n + 1. Note that this latter 
conjecture is stronger than the former conjecture when a = 2b = 2c.

In this paper, we introduce a new method to study the conjectures of Lengyel men-
tioned above. We will develop a detailed 2-adic analysis to the Stirling numbers of the 
second kind. The main results of this paper can be stated as follows.

Theorem 1.1. Let a, b, n ∈ N with a > b ≥ 1. For r ∈ {2, 3}, define Tr := ν2(S(a2n,
2r − 1) −S(b2n, 2r − 1)). If n ≥ r, then Tr = n + 1 + ν2(a − b) if b2n > n + r+ ν2(a − b), 
Tr > n +1 +ν2(a −b) if b2n = n +r+ν2(a −b), and Tr = b2n−1 if b2n < n +r+ν2(a −b).

Theorem 1.2. Let c, m, n ∈ N with c ≥ 1 being odd and 2 ≤ m ≤ n. Then 
ν2(S(c2n+1, 2m − 1) − S(c2n, 2m − 1)) = n + 1 except when n = m = 2 and c = 1, 
in which case one has ν2(S(8, 3) − S(4, 3)) = 6.

Evidently, by Theorem 1.1, we know that the first conjecture of Lengyel is true for 
the cases that k = 3 and 7 and sufficiently large n, but its truth still keeps open when k
is a power of 2 minus 1 and no less than 15. By Theorem 1.2 one knows that the second 
conjecture of Lengyel holds except for the case that n = m = 2 and c = 1, in which case 
it is not true.

This paper is organized as follows. In Section 2, we recall some known results and 
show also several new results that are needed in the proofs of Theorems 1.1 and 1.2. 
The proofs of Theorems 1.1 and 1.2 are given in Section 3. The new key ingredients in 
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