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Suppose that p is an odd prime and α, β are prime to p. We 
prove that p2 divides the truncated hypergeometric function

3F2

[
α β 1 − α− β

1 1

∣∣∣∣1
]
p

provided 〈α〉p + 〈β〉p ≤ p, where 〈α〉p denotes the least non-
negative residue of α modulo p.
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The truncated hypergeometric function q+1Fq

[
α1 α2

β1

...

...
αq+1
βq

∣∣∣x]
n

is given by

pFq

[
α1 α2 . . . αp

β1 β2 . . . βq

∣∣∣∣x
]
n

=
n−1∑
k=0

(α1)k(α2)k · · · (αp)k
(β1)k(β2)k · · · (βq)k

· x
k

k! .

where

(α)k =
{
α(α + 1) · · · (α + k − 1), if k ≥ 1,
1, if k = 0.

In [7] and [8], with the help of the Gross–Koblitz formula, E. Mortenson stud-
ied the arithmetical properties of q+1Fq

[
m1/d1 m2/d2

1 · · · mq+1/dq+1
1

∣∣∣1]
p
, where 1 ≤

mi < di and p is a prime with p ≡ 1 (mod [d1, . . . , dq+1]). He showed that 
q+1Fq
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1
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p

modulo p2 can be represented as the sum of prod-
ucts of some Jacobi sums. As the applications, Mortenson resolved several conjectures 
of Rodriguez-Villegas. For example, he proved that
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)
(mod p2), 2F1
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(mod p2),
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(mod p2), 2F1
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(mod p2),

where 
( ·
p

)
denotes the Legendre symbol modulo p.

Subsequently, using the Zeilberger algorithm, Z.-W. Sun [15] gave the elementary 
proofs for the above four congruences. Furthermore, in [13], Z.-H. Sun considered 

2F1

[
α 1−α

1
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p

modulo p2. In fact, he proved that

2F1

[
α 1 − α

1

∣∣∣∣1
]
p

≡ (−1)〈α〉p−1 (mod p2),

where 〈α〉p denotes the least non-negative residue of α modulo p.
In [8], Mortenson also established some interesting congruences for truncated 3F2

modulo p2. For example, he proved that

3F2

[
1/2 1/2 1/2

1 1

∣∣∣∣1
]
p

≡ a(p) (mod p2),

where a(n) arises from the newform

∞∑
n=1

a(n)qn = η(4z)6 ∈ S3(Γ0(16),
(−4

d

)
)

and η(z) is the Dedekind η-function. Notice that according to [10, 14.2], we have



Download English Version:

https://daneshyari.com/en/article/6415414

Download Persian Version:

https://daneshyari.com/article/6415414

Daneshyari.com

https://daneshyari.com/en/article/6415414
https://daneshyari.com/article/6415414
https://daneshyari.com

