

Contents lists available at ScienceDirect

Journal of Number Theory

Sets of positive integers closed under product and the number of decimal digits

J.C. Rosales ^{a,1}, M.B. Branco ^{b,2}, D. Torrão ^c

- ^a Departamento de Álgebra, Universidad de Granada, E-18071 Granada, Spain
- ^b Departamento de Matemática, Universidade de Évora, 7000 Évora, Portugal
- ^c Universidade de Évora, 7000 Évora, Portugal

ARTICLE INFO

Article history: Received 13 January 2014 Received in revised form 20 May 2014 Accepted 10 June 2014 Available online 14 August 2014 Communicated by David Goss

MSC: 11N25 20M14 11D07

Keywords:
Digital semigroup
Monoid
Numerical semigroup
Frobenius number
Tree

ABSTRACT

A digital semigroup D is a subsemigroup of $(\mathbb{N}\setminus\{0\},\cdot)$ such that if $d\in D$ then $\{x\in\mathbb{N}\setminus\{0\}\mid \ell(x)=\ell(d)\}\subseteq D$ with $\ell(n)$ the number of digits of n written in decimal expansion. In this note, we compute the smallest digital semigroup containing a set of positive integers. For this, we establish a connection between the digital semigroups and a class of numerical semigroups called LD-semigroups.

© 2014 Elsevier Inc. All rights reserved.

E-mail addresses: jrosales@ugr.es (J.C. Rosales), mbb@uevora.pt (M.B. Branco), denisetorrao@hotmail.com (D. Torrão).

 $^{^{1}}$ The first author was partially supported by the research groups FQM-343 FQM-5849 (Junta de Andalucia/Feder) and project MTM2010-15595 (MICINN, Spain).

 $^{^2}$ The second author is supported by Universidade de Évora and the CIMA-UE 2013.

1. Introduction

Given a positive integer n, we denote by $\ell(n)$ the number of digits of n write in decimal expansion. For example $\ell(137) = 3$ and $\ell(2335) = 4$.

Let \mathbb{N} be the set of nonnegative integers. A digital semigroup D is a subsemigroup of $(\mathbb{N}\setminus\{0\},\cdot)$ such that if $d\in D$ then $\{x\in\mathbb{N}\setminus\{0\}\mid\ell(x)=\ell(d)\}\subseteq D$. Our main goal in this paper is to study the digital semigroups. We are interested in determining the smallest digital semigroup containing a set of positive integers. For this, we will establish a connection between the digital semigroups and a class of numerical semigroups which we will call LD-semigroups.

A numerical semigroup is a submonoid S of $(\mathbb{N}, +)$ such that $\mathbb{N}\backslash S$ is finite (the cardinality of $\mathbb{N}\backslash S$, g(S), is the gender of S). Given, A a subset of $\mathbb{N}\backslash \{0\}$, we denote by $L(A) = \{\ell(a) \mid a \in A\}$. We prove that if D a digital semigroup then $L(D) \cup \{0\}$ is a numerical semigroup. A numerical semigroup S is called LD-semigroup if there exist a digital semigroup D such that $S = L(D) \cup \{0\}$.

Denote by \mathcal{D} (respectively \mathcal{L}) the set of all digital semigroups (respectively LD-semigroups). We see that the map $\varphi: \mathcal{D} \longrightarrow \mathcal{L}$ defined by $\varphi(D) = L(D) \cup \{0\}$ is bijective and its inverse is the map $\theta: \mathcal{L} \longrightarrow \mathcal{D}$ with $\theta(S) = \{a \in \mathbb{N} \setminus \{0\} \mid \ell(a) \in S\}$. From this it easily follows that if D is a digital semigroup then $\mathbb{N} \setminus D$ is finite.

We characterize the LD-semigroups in the following way: a numerical semigroup S is an LD-semigroup if and only if $a+b-1 \in S$ for all $a,b \in S \setminus \{0\}$ (Theorem 4). This fact allows us prove that \mathcal{L} is a Frobenius variety (see [4]). The greatest integer that does not belong to a numerical semigroup S is called the Frobenius number of S and it is denoted here by F(S) (see [3]). A Frobenius variety is a nonempty set \mathcal{V} of numerical semigroups fulfilling the following conditions:

- (1) if S and T are in \mathcal{V} , then so is $S \cap T$:
- (2) if S is in V and it is not equal to N, then $S \cup \{F(S)\}$ is in V.

This fact together with the results presented in [4] allows us to arrange the elements of \mathcal{L} in a tree. We characterize the sons of any vertex of this tree and this will enable us to recursively construct the set \mathcal{L} and consequently the set \mathcal{D} .

Given a set of positive integers X we denote by $\mathcal{D}(X)$ (respectively $\mathcal{L}(X)$) the smallest (with respect to the set inclusion order) digital semigroup containing X (respectively LD-semigroup). We prove that if X is a set of positive integers and S the smallest LD-semigroup containing L(X) then $\theta(S)$ is the smallest digital semigroup containing X. As a first consequence of this we get that $\mathcal{D} = \{\mathcal{D}(X) \mid X \text{ is a nonempty finite subset of } \mathbb{N} \setminus \{0\} \}$ whence every digital semigroup can be described from a finite number of terms.

Given a finite set of positive integers X we describe an algorithmic procedure for computing the smallest LD-semigroup that contains X. As a consequence we have an algorithm that computes the smallest digital semigroup containing a finite set of positive integers.

Download English Version:

https://daneshyari.com/en/article/6415422

Download Persian Version:

https://daneshyari.com/article/6415422

Daneshyari.com