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A digital semigroup D is a subsemigroup of (N\{0}, ·) such 
that if d ∈ D then {x ∈ N\{0} | �(x) = �(d)} ⊆ D with �(n)
the number of digits of n written in decimal expansion. In this 
note, we compute the smallest digital semigroup containing a 
set of positive integers. For this, we establish a connection 
between the digital semigroups and a class of numerical 
semigroups called LD-semigroups.
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1. Introduction

Given a positive integer n, we denote by �(n) the number of digits of n write in decimal 
expansion. For example �(137) = 3 and �(2335) = 4.

Let N be the set of nonnegative integers. A digital semigroup D is a subsemigroup 
of (N\{0}, ·) such that if d ∈ D then {x ∈ N\{0} | �(x) = �(d)} ⊆ D. Our main goal 
in this paper is to study the digital semigroups. We are interested in determining the 
smallest digital semigroup containing a set of positive integers. For this, we will establish 
a connection between the digital semigroups and a class of numerical semigroups which 
we will call LD-semigroups.

A numerical semigroup is a submonoid S of (N, +) such that N\S is finite (the car-
dinality of N\S, g(S), is the gender of S). Given, A a subset of N\{0}, we denote by 
L(A) = {�(a) | a ∈ A}. We prove that if D a digital semigroup then L(D) ∪ {0} is a 
numerical semigroup. A numerical semigroup S is called LD-semigroup if there exist a 
digital semigroup D such that S = L(D) ∪ {0}.

Denote by D (respectively L) the set of all digital semigroups (respectively LD-
semigroups). We see that the map ϕ : D −→ L defined by ϕ(D) = L(D) ∪ {0} is 
bijective and its inverse is the map θ : L −→ D with θ(S) = {a ∈ N\{0} | �(a) ∈ S}. 
From this it easily follows that if D is a digital semigroup then N\D is finite.

We characterize the LD-semigroups in the following way: a numerical semigroup S is 
an LD-semigroup if and only if a + b − 1 ∈ S for all a, b ∈ S\{0} (Theorem 4). This fact 
allows us prove that L is a Frobenius variety (see [4]). The greatest integer that does not 
belong to a numerical semigroup S is called the Frobenius number of S and it is denoted 
here by F(S) (see [3]). A Frobenius variety is a nonempty set V of numerical semigroups 
fulfilling the following conditions:

(1) if S and T are in V, then so is S ∩ T ;
(2) if S is in V and it is not equal to N, then S ∪ {F(S)} is in V.

This fact together with the results presented in [4] allows us to arrange the elements of 
L in a tree. We characterize the sons of any vertex of this tree and this will enable us to 
recursively construct the set L and consequently the set D.

Given a set of positive integers X we denote by D(X) (respectively L(X)) the 
smallest (with respect to the set inclusion order) digital semigroup containing X (re-
spectively LD-semigroup). We prove that if X is a set of positive integers and S
the smallest LD-semigroup containing L(X) then θ(S) is the smallest digital semi-
group containing X. As a first consequence of this we get that D = {D(X) |
X is a nonempty finite subset of N\{0}} whence every digital semigroup can be de-

scribed from a finite number of terms.
Given a finite set of positive integers X we describe an algorithmic procedure for 

computing the smallest LD-semigroup that contains X. As a consequence we have an 
algorithm that computes the smallest digital semigroup containing a finite set of positive 
integers.
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