

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Determination of a type of permutation binomials over finite fields

霐

Xiang-Dong Hou^{*,1}, Stephen D. Lappano

Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, United States

A R T I C L E I N F O

Article history: Received 20 January 2014 Received in revised form 13 June 2014 Accepted 16 June 2014 Available online 8 August 2014 Communicated by D. Wan

MSC: 11T06 11T55

Keywords: Binomial Finite field Hermite criterion Permutation polynomial

ABSTRACT

Let $f = a\mathbf{x} + \mathbf{x}^{3q-2} \in \mathbb{F}_{q^2}[\mathbf{x}]$, where $a \in \mathbb{F}_{q^2}^*$. We prove that f is a permutation polynomial of \mathbb{F}_{q^2} if and only if one of the following occurs: (i) $q = 2^e$, e odd, and $a^{\frac{q+1}{3}}$ is a primitive 3rd root of unity. (ii) (q, a) belongs to a finite set which is determined in the paper.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A polynomial $f \in \mathbb{F}_q[\mathbf{x}]$ is called a *permutation polynomial* (PP) of \mathbb{F}_q if it induces a permutation of \mathbb{F}_q . While permutation monomials of \mathbb{F}_q are obvious $(a\mathbf{x}^n, a \in \mathbb{F}_q^*, gcd(n, q - 1) = 1)$, the situation for permutation binomials is much more interesting

* Corresponding author.

E-mail addresses: xhou@usf.edu (X.-D. Hou), slappano@mail.usf.edu (S.D. Lappano).

¹ Research partially supported by NSA Grant H98230-12-1-0245.

and challenging. The reason for a binomial to be a PP can be quite nontrivial despite the simple appearance of the binomial. In [3], Carlitz and Wells proved that for fixed integers e > 1 and c > 0, when q is large enough and satisfies the conditions $e \mid q - 1$ and gcd(c, q - 1) = 1, there exists $a \in \mathbb{F}_q^*$ such that $\mathbf{x}^c(\mathbf{x}^{\frac{q-1}{e}} + a)^k$ is a PP of \mathbb{F}_q for all $k \ge 0$. (Note that when k = 1, the PP is a binomial.) The special cases of this result with c = k = 1 and e = 2,3 appeared in [2]. Carlitz and Wells' proof of the existence result relies on a bound on the Weil sum of a multiplicative character of \mathbb{F}_q [17], [8, Theorem 5.39]. Using the Hasse–Weil bound on the number of degree one places of a function field over \mathbb{F}_q [11, Theorem V.2.3], Masuda and Zieve [9] were able to make Carlitz–Wells' existence result (with k = 1) more precise. They proved that if $q \ge 4$ and $\frac{q-1}{e} > 2q(\log \log q)/\log q$, then there exists $a \in \mathbb{F}_q^*$ such that $\mathbf{x}^c(\mathbf{x}^{\frac{q-1}{e}} + a)$ is a PP of \mathbb{F}_q . Moreover, they obtained an estimate for the number of a's with this property.

There are also nonexistence results on permutation binomials. Niederreiter and Robinson [10] proved that if there is a PP of \mathbb{F}_q of the form $\mathbf{x}^m + a\mathbf{x}$, where m > 2 and $a \in \mathbb{F}_q^*$, then either m is a power of p $(p = \operatorname{char} \mathbb{F}_q)$ or $q < (m^2 - 4m + 6)^2$. An improvement of this result was obtained by Turnwald [13]: If there is a PP of \mathbb{F}_q of the form $\mathbf{x}^m + a\mathbf{x}^n$, where m > n > 0 and $a \in \mathbb{F}_q^*$, then either $\frac{m}{n}$ is a power of p or $q \le (m-2)^4 + 4m - 4$. For permutation binomials over prime fields, the nonexistence results are stronger. Wan [14] proved that if there is a PP of \mathbb{F}_p of the form $\mathbf{x}^m + a\mathbf{x}$, where m > 1 and $a \in \mathbb{F}_p^*$, then $p-1 \le (m-1)\operatorname{gcd}(m-1, p-1)$. Turnwald [13] considered $f = \mathbf{x}^m + a\mathbf{x}^n \in \mathbb{F}_p[\mathbf{x}]$, where m > n > 0 and $a \in \mathbb{F}_p^*$, and proved that f is a PP of \mathbb{F}_p implies $p < m \cdot \max(n, m - n)$. Masuda and Zieve [9] improved Turnwald's bound to $p-1 < (m-1) \cdot \max\{n, \operatorname{gcd}(m-n, p-1)\}$.

Let $r \ge 2$. In [2], Carlitz proved that the binomial $\mathbf{x}^{1+\frac{q-1}{2}} + a\mathbf{x}$ $(q \text{ odd}, a \ne 0)$ cannot be a PP of \mathbb{F}_{q^r} , and he raised the same question for $\mathbf{x}^{1+\frac{q-1}{3}} + a\mathbf{x}$ $(q \equiv 1 \pmod{3}, a \ne 0)$. Wan [14,15] answered Carlitz's question by showing that $\mathbf{x}^{1+\frac{q-1}{3}} + a\mathbf{x}$ $(q \equiv 1 \pmod{3}, a \ne 0)$ cannot be a PP of \mathbb{F}_{p^r} . Kim and Lee [7] proved that $\mathbf{x}^{1+\frac{q-1}{3}} + a\mathbf{x}$ $(q \equiv 1 \pmod{3}, a \ne 0)$ cannot be a PP of \mathbb{F}_{q^r} for $p \ne 2$. More generally, one may consider $\mathbf{x}^{1+\frac{q-1}{m}} + a\mathbf{x} \in \mathbb{F}_q[\mathbf{x}]$, where $q \equiv 1 \pmod{m}$, $m \ge 2$, $a \ne 0$. Clearly, if $m = \frac{q-1}{p^{i}-1}$, where $\mathbb{F}_{p^i} \subset \mathbb{F}_q$, then $\mathbf{x}^{1+\frac{q-1}{m}} + a\mathbf{x} = \mathbf{x}^{p^i} + a\mathbf{x}$, which is a PP of \mathbb{F}_{q^r} if and only if $(-a)^{(q^r-1)/(p^i-1)} \ne 1$. When $1 + \frac{q-1}{m}$ is not a power of p, it is not known if the binomial can be a PP of \mathbb{F}_{q^r} .

Let $f = \mathbf{x}^m + a\mathbf{x}^n \in \mathbb{F}_q[\mathbf{x}]$, where m > n > 0 and $a \in \mathbb{F}_q^*$. The conditions that make f a PP of \mathbb{F}_q are encoded in a simple set of parameters m, n, q, a in a mysterious way that is not well understood on the whole. However, when m and n take certain particular forms, necessary and sufficient conditions for f to be a PP of \mathbb{F}_q have been found. Niederreiter and Robinson [10] proved that $\mathbf{x}^{\frac{q+1}{2}} + a\mathbf{x} \in \mathbb{F}_q[x]$ (q odd, $a \in \mathbb{F}_q^*$) is a PP of \mathbb{F}_q if and only if $a^2 - 1$ is a square in \mathbb{F}_q^* ; also see [2]. Akbary and Wang [1] considered binomials of the form $f = \mathbf{x}^r(1 + \mathbf{x}^{es})$, where e, r, s are positive integers such that $s \mid q - 1$, gcd(r, s) = 1, $gcd(2e, \frac{q-1}{s}) = 1$. They found sufficient conditions for f to be a PP of \mathbb{F}_q in terms of the period of the generalized Lucas sequence. The conditions are not entirely explicit, but their special cases do give explicit classes of permutation binomials of \mathbb{F}_q . The sufficient conditions in [1] were later weakened by Wang [16] to conditions that are both necessary

Download English Version:

https://daneshyari.com/en/article/6415423

Download Persian Version:

https://daneshyari.com/article/6415423

Daneshyari.com