On small bases which admit countably many expansions

Simon Baker
School of Mathematics, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

A R T I C L E I N F O

Article history:

Received 24 May 2013
Received in revised form 4 August 2014
Accepted 6 August 2014
Available online 2 October 2014
Communicated by Jeffrey C.
Lagarias
Dedicated to P. Erdős on the 100th anniversary of his birth

MSC:

11A63
37A45
Keywords:
Beta-expansion
Non-integer base

A B S T R A C T

Let $q \in(1,2)$ and $x \in\left[0, \frac{1}{q-1}\right]$. We say that a sequence $\left(\epsilon_{i}\right)_{i=1}^{\infty} \in\{0,1\}^{\mathbb{N}}$ is an expansion of x in base q (or a q-expansion) if

$$
x=\sum_{i=1}^{\infty} \epsilon_{i} q^{-i}
$$

Let $\mathcal{B}_{\aleph_{0}}$ denote the set of q for which there exists x with exactly \aleph_{0} expansions in base q. In [5] it was shown that $\min \mathcal{B}_{\aleph_{0}}=\frac{1+\sqrt{5}}{2}$. In this paper we show that the smallest element of $\mathcal{B}_{\aleph_{0}}$ strictly greater than $\frac{1+\sqrt{5}}{2}$ is $q_{\aleph_{0}} \approx 1.64541$, the appropriate root of $x^{6}=x^{4}+x^{3}+2 x^{2}+x+1$. This leads to a full dichotomy for the number of possible q-expansions for $q \in\left(\frac{1+\sqrt{5}}{2}, q_{\aleph_{0}}\right)$. We also prove some general results regarding $\mathcal{B}_{\aleph_{0}} \cap\left[\frac{1+\sqrt{5}}{2}, q_{f}\right]$, where $q_{f} \approx 1.75488$ is the appropriate root of $x^{3}=2 x^{2}-x+1$. Moreover, the techniques developed in this paper imply that if $x \in\left[0, \frac{1}{q-1}\right]$ has uncountably many q-expansions then the set of q-expansions for x has cardinality equal to that of the continuum, this proves that the continuum hypothesis holds when restricted to this specific case.
© 2014 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let $q \in(1,2)$ and $I_{q}=\left[0, \frac{1}{q-1}\right]$. Each $x \in I_{q}$ has an expansion of the form

$$
\begin{equation*}
x=\sum_{i=1}^{\infty} \frac{\epsilon_{i}}{q^{i}} \tag{1.1}
\end{equation*}
$$

for some $\left(\epsilon_{i}\right)_{i=1}^{\infty} \in\{0,1\}^{\mathbb{N}}$. We call such a sequence a q-expansion of x, when (1.1) holds we will adopt the notation $x=\left(\epsilon_{1}, \epsilon_{2}, \ldots\right)_{q}$. Expansions in non-integer bases were pioneered in the papers of Rényi [11] and Parry [10].

Given $x \in I_{q}$ we denote the set of q-expansions of x by $\Sigma_{q}(x)$, i.e.,

$$
\Sigma_{q}(x)=\left\{\left(\epsilon_{i}\right)_{i=1}^{\infty} \in\{0,1\}^{\mathbb{N}}: \sum_{i=1}^{\infty} \frac{\epsilon_{i}}{q^{i}}=x\right\}
$$

The endpoints of I_{q} always have a unique q-expansion, typically an element of $\left(0, \frac{1}{q-1}\right)$ will have a nonunique q-expansion. In [7] it was shown that for $q \in\left(1, \frac{1+\sqrt{5}}{2}\right)$ the set $\Sigma_{q}(x)$ is uncountable for all $x \in\left(0, \frac{1}{q-1}\right)$. When $q=\frac{1+\sqrt{5}}{2}$ it was shown in [15] that every $x \in\left(0, \frac{1}{q-1}\right)$ has uncountably many q-expansions unless $x=\frac{(1+\sqrt{5}) n}{2} \bmod 1$, for some $n \in \mathbb{Z}$, in which case $\Sigma_{q}(x)$ is infinite countable. In [12] it was shown that for $q \in\left(\frac{1+\sqrt{5}}{2}, 2\right)$ the set $\Sigma_{q}(x)$ is uncountable for almost every $x \in\left(0, \frac{1}{q-1}\right)$. Furthermore, if $q \in\left(\frac{1+\sqrt{5}}{2}, 2\right)$ then it was shown in [4] that there always exists $x \in\left(0, \frac{1}{q-1}\right)$ with a unique q-expansion.

In this paper we will be interested in the set of $q \in(1,2)$ for which there exists $x \in\left(0, \frac{1}{q-1}\right)$ satisfying card $\Sigma_{q}(x)=\aleph_{0}$. More specifically, we will be interested in the set

$$
\mathcal{B}_{\aleph_{0}}:=\left\{q \in(1,2) \mid \text { there exists } x \in\left(0, \frac{1}{q-1}\right) \text { satisfying card } \Sigma_{q}(x)=\aleph_{0}\right\} .
$$

In [5] it was shown that $\min \mathcal{B}_{\aleph_{0}}=\frac{1+\sqrt{5}}{2}$. We can define \mathcal{B}_{k} in an analogous way for all $k \geq 1$. It was first shown in [6] that $\mathcal{B}_{k} \neq \emptyset$ for all $k \geq 2$, this was later improved upon in [14] where it was shown that for each $k \in \mathbb{N}$ there exists $\gamma_{k}>0$ such that $\left(2-\gamma_{k}, 2\right) \subset \mathcal{B}_{j}$ for all $1 \leq j \leq k$. Combining the results stated in [14] and [3] the following theorem is shown to hold.

Theorem 1.1.

(1) The smallest element of \mathcal{B}_{2} is

$$
q_{2} \approx 1.71064
$$

the appropriate root of $x^{4}=2 x^{2}+x+1$.

https://daneshyari.com/en/article/6415479

Download Persian Version:

https://daneshyari.com/article/6415479

Daneshyari.com

[^0]: E-mail address: simon.baker@manchester.ac.uk.

