

Contents lists available at ScienceDirect

Journal of Number Theory

Proof of a conjecture of Mircea Merca

Victor J.W. Guo

Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, People's Republic of China

ARTICLE INFO

Article history: Received 1 August 2014 Accepted 19 August 2014 Available online 7 October 2014 Communicated by David Goss

MSC: 05A10 05A19

Keywords: Multinomial coefficients Binomial coefficients Fine's formula

ABSTRACT

We prove that, for any prime p and positive integer r with $p^r > 2$, the number of multinomial coefficients such that

$$\binom{k}{k_1, k_2, \dots, k_n} = p^r, \quad \text{and} \quad k_1 + 2k_2 + \dots + nk_n = n,$$

is given by

$$\delta_{p^r,k} \left(\left| \frac{n-1}{p^r-1} \right| - \delta_{0,n \mod p^r} \right),$$

where $\delta_{i,j}$ is the Kronecker delta and $\lfloor x \rfloor$ stands for the largest integer not exceeding x. This confirms a recent conjecture of Mircea Merca.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The multinomial coefficients are defined by

$$\binom{k}{k_1, k_2, \dots, k_n} = \frac{k!}{k_1! k_2! \cdots k_n!},$$

E-mail address: jwguo@math.ecnu.edu.cn. URL: http://math.ecnu.edu.cn/~jwguo.

where $k = k_1 + k_2 + \cdots + k_n$. Fine [1, p. 87] gave a connection between multinomial coefficients and binomial coefficients:

$$\sum_{\substack{k_1+k_2+\dots+k_n=k\\k_1+2k_2+\dots+nk_n=n}} \binom{k}{k_1, k_2, \dots, k_n} = \binom{n-1}{k-1}.$$
 (1.1)

Let $M_m(n,k)$ be the number of multinomial coefficients such that

$$\binom{k}{k_1, k_2, \dots, k_n} = m$$
, and $k_1 + 2k_2 + \dots + nk_n = n$.

For example, we have $M_6(10,3) = 4$, since

$$10 = 1 + 2 + 7 = 1 + 3 + 6 = 1 + 4 + 5 = 2 + 3 + 5.$$

It is easy to see that $M_1(n,k) = \delta_{0,n \mod k}$. Recently, applying Fine's formula (1.1), Merca [2] obtained new upper bounds involving $M_m(n,k)$ for the number of partitions of n into k parts. He also proved that

$$M_2(n,k) = \delta_{2,k} \left\lfloor \frac{n-1}{2} \right\rfloor, \qquad M_p(n,k) = \delta_{p,k} \left(\left\lfloor \frac{n-1}{p-1} \right\rfloor - \delta_{0,n \mod p} \right),$$

where p is an odd prime.

In this paper, we shall prove the following result, which was conjectured by Merca [2, Conjecture 1].

Theorem 1. Let p be a prime and let n, k, r be positive integers with $p^r > 2$. Then

$$M_{p^r}(n,k) = \delta_{p^r,k} \left(\left| \frac{n-1}{p^r - 1} \right| - \delta_{0,n \bmod p^r} \right).$$

Merca [2] pointed out that, when m is not a prime power, the formula for $M_m(n,k)$ is more involved. For example, we have

$$M_{10}(n,k) = \delta_{10,k} \left(\left\lfloor \frac{n-1}{9} \right\rfloor - \delta_{0,n \bmod 10} \right) + \delta_{5,k} \left(\left\lfloor \frac{n+1}{6} \right\rfloor - \delta_{0,n \bmod 5} - \delta_{0,n \bmod 6} \right).$$

2. Proof of Theorem 1

We need the following result.

Lemma 2. Let n and k be two positive integers with $2 \le k \le \frac{n}{2}$. Then the binomial coefficient $\binom{n}{k}$ is not a prime power.

Download English Version:

https://daneshyari.com/en/article/6415487

Download Persian Version:

https://daneshyari.com/article/6415487

Daneshyari.com