

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

New reciprocity laws for octic residues and nonresidues

Zhi-Hong Sun¹

 $School\ of\ Mathematical\ Sciences,\ Huaiyin\ Normal\ University,\ Huaian,\ Jiangsu\ 223001,\ PR\ China$

ARTICLE INFO

Article history:
Received 9 July 2014
Received in revised form 25 July 2014
Accepted 3 August 2014
Available online 7 October 2014
Communicated by David Goss

MSC: primary 11A15 secondary 11A07, 11B39, 11E25

Keywords: Reciprocity law Octic residue Congruence Quartic Jacobi symbol Lucas sequence

ABSTRACT

Let $\mathbb Z$ be the set of integers, and let p be a prime of the form 8k+1. Suppose $q\in\mathbb Z$, $2\nmid q$, $p\nmid q$, $p=c^2+d^2=x^2+2qy^2$, $c,d,x,y\in\mathbb Z$ and $c\equiv 1\pmod 4$. In this paper we establish congruences for $(-q)^{(p-1)/8}\pmod p$ and present new reciprocity laws.

© 2014 Elsevier Inc. All rights reserved.

E-mail address: zhihongsun@yahoo.com.

URL: http://www.hytc.edu.cn/xsjl/szh.

Supported by the National Natural Science Foundation of China (grant No. 11371163).

1. Introduction

Let \mathbb{Z} be the set of integers, $i = \sqrt{-1}$ and $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$. For any positive odd number m and $a \in \mathbb{Z}$ let $(\frac{a}{m})$ be the (quadratic) Jacobi symbol. For convenience we also define $(\frac{a}{1}) = 1$ and $(\frac{a}{-m}) = (\frac{a}{m})$. Then for any two odd numbers m and n with m > 0 or n > 0 we have the following general quadratic reciprocity law: $(\frac{m}{n}) = (-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}} (\frac{n}{m})$.

For $a, b, c, d \in \mathbb{Z}$ with $2 \nmid c$ and $2 \mid d$, one can define the quartic Jacobi symbol $(\frac{a+bi}{c+di})_4$ as in [S1,S2,S4]. From [IR] we know that $(\frac{a-bi}{c-di})_4 = (\frac{a+bi}{c+di})_4^{-1}$. In Section 2 we list main properties of the quartic Jacobi symbol. See also [IR,BEW,S4]. For the history of quartic reciprocity laws, see [Lem].

Let p be a prime of the form 4k+1, $q \in \mathbb{Z}$, $2 \nmid q$ and $p \nmid q$. Suppose that $p = c^2 + d^2 = x^2 + qy^2$, $c, d, x, y \in \mathbb{Z}$, $c \equiv 1 \pmod{4}$, $d = 2^r d_0$ and $d_0 \equiv 1 \pmod{4}$. Assume that (c, x + d) = 1 or $(d_0, x + c) = 1$, where (m, n) is the greatest common divisor of m and n. In [S5], using the quartic reciprocity law the author deduced some congruences for $q^{[p/8]} \pmod{p}$ in terms of c, d, x and y, where [a] is the greatest integer not exceeding a.

Let p be a prime of the form 8k+1, $q \in \mathbb{Z}$, $2 \nmid q$ and $p \nmid q$. Then q is an octic residue (mod p) if and only if $q^{(p-1)/8} \equiv 1 \pmod{p}$. In the classical octic reciprocity laws (see [Lem] and [BEW]), we always assume that $p = c^2 + d^2 = a^2 + 2b^2$ $(a, b, c, d \in \mathbb{Z})$. Inspired by [S5], in this paper we continue to discuss congruences for $(-q)^{(p-1)/8} \pmod{p}$ and present new reciprocity laws, but we assume that $p = c^2 + d^2 = x^2 + 2qy^2$. Here are some typical results:

- * Let p and q be primes such that $p \equiv 1 \pmod{8}$, $q \equiv 7 \pmod{8}$, $p = c^2 + d^2 = x^2 + 2qy^2$, $c, d, x, y \in \mathbb{Z}$, $c \equiv 1 \pmod{4}$, $d = 2^r d_0$ and $d_0 \equiv 1 \pmod{4}$. Assume (c, x + d) = 1 or $(d_0, x + c) = 1$. Then $(-q)^{\frac{p-1}{8}} \equiv (\frac{d}{c})^m \pmod{p}$ if and only if $(\frac{c-di}{c+di})^{\frac{q+1}{8}} \equiv i^m \pmod{q}$.
- * Let $p \equiv 1 \pmod{8}$ be a prime, $p = c^2 + d^2 = x^2 + 2(a^2 + b^2)y^2$, $a, b, c, d, x, y \in \mathbb{Z}$, $a \neq 0, 4 \mid a, (a, b) = 1, c \equiv 1 \pmod{4}, d = 2^r d_0 \text{ and } d_0 \equiv 1 \pmod{4}$. Assume (c, x + d) = 1 or $(d_0, x + c) = 1$. Then $(-a^2 b^2)^{\frac{p-1}{8}} \equiv (-1)^{\frac{d}{4} + \frac{y}{2}} (\frac{c}{d})^m \pmod{p}$ if and only if $(\frac{(ac + bd)/x}{b + ai})_4 = i^m$.
- * Let p be a prime of the form 8k+1 and $a \in \mathbb{Z}$ with $2 \nmid a$. Suppose that $p = c^2 + d^2 = x^2 + (a^2 + 1)y^2$, $c, d, x, y \in \mathbb{Z}$, $c \equiv 1 \pmod{4}$, $d = 2^r d_0(2 \nmid d_0)$ and $4 \mid y$. Assume (c, x + d) = 1 or $(d_0, x + c) = 1$. Then $(a + \sqrt{a^2 + 1})^{\frac{p-1}{4}} \equiv (-1)^{\frac{d}{4} + \frac{y}{4}} \pmod{p}$.

When a is even, a congruence for $(a+\sqrt{a^2+1})^{(p-1)/4}$ (mod p) was given by the author in [S6, Corollary 4.1]. When $a\geq 3$ is a positive integer and a^2+1 is squarefree, $a+\sqrt{a^2+1}$ is just the fundamental unit ε_{a^2+1} of the quadratic field $\mathbb{Q}(\sqrt{a^2+1})$. For early results and conjectures on $\varepsilon_d^{(p-1)/4}$ (mod p), see [L2,LW1,LW2,HK,Lem,S2].

Throughout this paper, if $n \in \mathbb{Z}$, $2^{\alpha} \mid n$ and $2^{\alpha+1} \nmid n$, then we write that $2^{\alpha} \parallel n$.

Download English Version:

https://daneshyari.com/en/article/6415511

Download Persian Version:

https://daneshyari.com/article/6415511

<u>Daneshyari.com</u>