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1. Introduction

Let p(n) denote the number of unrestricted partitions of n. Ramanujan discovered
and later proved the following three famous congruences:
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p(bn+4) =0 (mod 5),
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p(Tn+5)=0 (mod 7),
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p(11n + 6) (mod 11).
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In order to find a combinatorial interpretation for Ramanujan’s congruences, in 1944,
F.J. Dyson [6] defined the rank of a partition to be the largest part minus the number
of parts. If N(m,n) is defined to be the number of partitions of n with rank m, then the
generating function for N(m,n) is given by
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Here and throughout, we use the notations
m—1
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n=0
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and we require |g| < 1 for absolute convergence.
Let N(s,l,n) denote the number of partitions of n whose rank is congruent to s
modulo [. Dyson then conjectured

(5n+4)

N(k,5,5n+4) =2 . 0<k<d (1.5)

and

p(Tn +5)

N(k,7,Tn+5) = 7 ,

0<k<6. (1.6)
Tt is easy to see that the above two conjectures imply Ramanujan’s congruences p(5n +
4) =0 (mod 5) and p(7n 4+ 5) = 0 (mod 7), respectively. Dyson’s conjectures were first
proved by A.O.L. Atkin and H.P.F. Swinnerton-Dyer [3] in 1954. In fact, they established
the generating functions for every rank difference N(s,l,Iin+d)—N(t,l,In+d) withl =5
or 7and 0 < d,s,t < [. Although Dyson’s rank fails to explain Ramanujan’s congruence
(1.3) combinatorially, the method developed by Atkin and Swinnerton-Dyer [3] is widely
used to get rank differences for other types of partitions ranks (see [16-18], for example).
Besides (1.5) and (1.6), more relations between ranks of partitions modulo 5 and 7 have
been obtained. As examples, we have
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