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In 1954, A.O.L. Atkin and H.P.F. Swinnerton-Dyer established
the generating functions for rank differences modulo 5 and 7
for partition functions. In this paper, we derive formulas for
the generating functions of ranks of partitions modulo 10 and
some inequalities between them.
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1. Introduction

Let p(n) denote the number of unrestricted partitions of n. Ramanujan discovered
and later proved the following three famous congruences:

p(5n + 4) ≡ 0 (mod 5), (1.1)

p(7n + 5) ≡ 0 (mod 7), (1.2)

p(11n + 6) ≡ 0 (mod 11). (1.3)
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In order to find a combinatorial interpretation for Ramanujan’s congruences, in 1944,
F.J. Dyson [6] defined the rank of a partition to be the largest part minus the number
of parts. If N(m,n) is defined to be the number of partitions of n with rank m, then the
generating function for N(m,n) is given by
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Here and throughout, we use the notations
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and we require |q| < 1 for absolute convergence.
Let N(s, l, n) denote the number of partitions of n whose rank is congruent to s

modulo l. Dyson then conjectured

N(k, 5, 5n + 4) = p(5n + 4)
5 , 0 � k � 4 (1.5)

and

N(k, 7, 7n + 5) = p(7n + 5)
5 , 0 � k � 6. (1.6)

It is easy to see that the above two conjectures imply Ramanujan’s congruences p(5n +
4) ≡ 0 (mod 5) and p(7n + 5) ≡ 0 (mod 7), respectively. Dyson’s conjectures were first
proved by A.O.L. Atkin and H.P.F. Swinnerton-Dyer [3] in 1954. In fact, they established
the generating functions for every rank difference N(s, l, ln+d)−N(t, l, ln+d) with l = 5
or 7 and 0 � d, s, t � l. Although Dyson’s rank fails to explain Ramanujan’s congruence
(1.3) combinatorially, the method developed by Atkin and Swinnerton-Dyer [3] is widely
used to get rank differences for other types of partitions ranks (see [16–18], for example).
Besides (1.5) and (1.6), more relations between ranks of partitions modulo 5 and 7 have
been obtained. As examples, we have
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