

Contents lists available at SciVerse ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Ranks of partitions modulo 10

Renrong Mao

Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Republic of Singapore

ARTICLE INFO

Article history: Received 8 March 2013 Revised 8 May 2013 Accepted 9 May 2013 Available online 17 July 2013 Communicated by David Goss

Keywords: Generating functions Partitions Rank Theta identities Ramanujan

АВЅТ КАСТ

In 1954, A.O.L. Atkin and H.P.F. Swinnerton-Dyer established the generating functions for rank differences modulo 5 and 7 for partition functions. In this paper, we derive formulas for the generating functions of ranks of partitions modulo 10 and some inequalities between them.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let p(n) denote the number of unrestricted partitions of n. Ramanujan discovered and later proved the following three famous congruences:

- $p(5n+4) \equiv 0 \pmod{5},\tag{1.1}$
- $p(7n+5) \equiv 0 \pmod{7},\tag{1.2}$

$$p(11n+6) \equiv 0 \pmod{11}.$$
 (1.3)

E-mail address: MAOR0001@e.ntu.edu.sg.

⁰⁰²²⁻³¹⁴ X/\$ – see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jnt.2013.05.014

In order to find a combinatorial interpretation for Ramanujan's congruences, in 1944, F.J. Dyson [6] defined the rank of a partition to be the largest part minus the number of parts. If N(m, n) is defined to be the number of partitions of n with rank m, then the generating function for N(m, n) is given by

$$\sum_{n=0}^{\infty} \sum_{m=-\infty}^{\infty} N(m,n) z^m q^n = \sum_{n=0}^{\infty} \frac{q^{n^2}}{(zq;q)_n (q/z;q)_n}.$$
(1.4)

Here and throughout, we use the notations

$$(x_1, x_2, \dots, x_k; q)_m := \prod_{n=0}^{m-1} (1 - x_1 q^n) (1 - x_2 q^n) \cdots (1 - x_k q^n),$$

$$(x_1, x_2, \dots, x_k; q)_{\infty} := \prod_{n=0}^{\infty} (1 - x_1 q^n) (1 - x_2 q^n) \cdots (1 - x_k q^n),$$

$$[x_1, x_2, \dots, x_k; q]_{\infty} := (x_1, q/x_1, x_2, q/x_2, \dots, x_k, q/x_k; q)_{\infty},$$

$$J_{a,b} := (q^a, q^{b-a}, q^b; q^b),$$

$$\overline{J}_{a,b} := (-q^a, -q^{b-a}, q^b; q^b),$$

$$J_b := (q^b; q^b)_{\infty},$$

$$\overline{J}_b := (-q^b; q^b)_{\infty},$$

and we require |q| < 1 for absolute convergence.

Let N(s, l, n) denote the number of partitions of n whose rank is congruent to s modulo l. Dyson then conjectured

$$N(k, 5, 5n+4) = \frac{p(5n+4)}{5}, \quad 0 \le k \le 4$$
(1.5)

and

$$N(k,7,7n+5) = \frac{p(7n+5)}{5}, \quad 0 \le k \le 6.$$
(1.6)

It is easy to see that the above two conjectures imply Ramanujan's congruences $p(5n + 4) \equiv 0 \pmod{5}$ and $p(7n + 5) \equiv 0 \pmod{7}$, respectively. Dyson's conjectures were first proved by A.O.L. Atkin and H.P.F. Swinnerton-Dyer [3] in 1954. In fact, they established the generating functions for every rank difference N(s, l, ln+d) - N(t, l, ln+d) with l = 5 or 7 and $0 \leq d, s, t \leq l$. Although Dyson's rank fails to explain Ramanujan's congruence (1.3) combinatorially, the method developed by Atkin and Swinnerton-Dyer [3] is widely used to get rank differences for other types of partitions ranks (see [16–18], for example). Besides (1.5) and (1.6), more relations between ranks of partitions modulo 5 and 7 have been obtained. As examples, we have

Download English Version:

https://daneshyari.com/en/article/6415554

Download Persian Version:

https://daneshyari.com/article/6415554

Daneshyari.com