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After the work of G. Frey, it is known that an appropriate
bound for the Faltings height of elliptic curves in terms of the
conductor (Frey’s height conjecture) would give a version of
the ABC conjecture. In this paper we prove a partial result
towards Frey’s height conjecture which applies to all elliptic
curves over Q, not only Frey curves. Our bound is completely
effective and the technique is based in the theory of modular
forms. As a consequence, we prove effective explicit bounds
towards the ABC conjecture of similar strength to what can
be obtained by linear forms in logarithms, without using the
latter technique. The main application is a new effective proof
of the finiteness of solutions to the S-unit equation (that is,
S-integral points of P1−{0, 1,∞}), with a completely explicit
and effective bound, without using any variant of Baker’s
theory or the Thue–Bombieri method.
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1. Introduction

A central problem in number theory is to establish the finiteness of integral or rational
solutions to a Diophantine equation. The proof of such finiteness results often gives an
upper bound for the number of solutions, while obtaining upper bounds for the size (or
more precisely, height) of the solutions is a much harder problem. Results of the latter
type are called effective since, in theory, a bound for the height of the solutions reduces
the search for solutions to a finite amount of computation. For later reference, we denote
the (logarithmic) height of a rational number q ∈ Q by

h(q) = log max
{
|a|, |b|

}

where a, b are coprime integers with q = a/b.
Effective results are difficult to obtain, and essentially the only general approaches are

Baker’s theory of linear forms in logarithms along with the p-adic and elliptic analogues
of it, and Bombieri’s improvement of Thue’s method [2].

The purpose of this note is to introduce another approach for obtaining effective
finiteness results. The technique that we present is based on the theory of modular forms,
and it originates in the known approaches to attack the ABC conjecture using elliptic
curves and modular forms, which we discuss below. Using this approach we provide
an ‘algebro-geometric proof’ of the following effective version of Mahler’s theorem [13,
p. 724] on the S-unit equation, a topic classically studied by means of analytic techniques.

Theorem 1.1. Let S be a finite set of primes in Z and let P be the product of the elements
of S. If U, V ∈ Z×

S satisfy U + V = 1 then

max
{
h(U), h(V )

}
< 4.8P logP + 13P + 25.

Here, Z×
S denotes the group of units of the ring ZS of rational S-integers. Moreover, as

we vary the set S we get

max
{
h(U), h(V )

}
< 4P logP + O(P log logP ).

The S-unit equation is a relevant case of finiteness result since several Diophantine
problems can be reduced to it. Although this is not the first ‘algebro-geometric’ proof of
finiteness of ZS-solutions to the unit equation (see the important work of M. Kim [11],
where the result is stated in terms of ZS-points of P1 − {0, 1,∞} and it is attributed to
Siegel), our method is effective and gives explicit constants.
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