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In this paper we show that for k ∈ N ∪ {0}, under natural
assumptions on the functions g and h, for a large class of
Riemann integrable functions f : [0, 1]k+1 → R (not all, for
k ∈ N; and all, for k = 0), the following equality holds

lim
x→∞

1
h(x)

∑
n�x

f

(
n

x
,
ln1 n

ln1 x
, . . . ,

lnk n

lnk x

)
g(n)

=

1∫
0

f(x, 1, . . . , 1︸ ︷︷ ︸
k-times

) dx.

Using these results for prime numbers, we obtain some new
extensions of the classical version from 1917 Polya’s theorem
in number theory.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In the famous paper published in 1896, see [7], J. Hadamard showed that if α > 1
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where Γ is the Euler gamma function and then he used this result in order to prove the
prime number theorem.

Few years later, Landau in 1900, see [10], using the prime number theorem, showed
that Hadamard’s formula (H) is true.

In a classical paper from 1917, see [14], based on the prime number theorem, Polya
showed that if f : [0, 1] → R is a Riemann integrable function on [0, 1], then

lim
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Some recent applications of Polya’s theorem can be found in [4].
In 1977, see [15], Radoux showed that

lim
n→∞

1
n2

n∑
k=1

f

(
k

n

)
ϕ(k) = 6

π2

1∫
0

xf(x) dx,

for all functions f : [0, 1] → R such that xf(x) is continuous on [0, 1], ϕ is Euler’s totient
function, see also [8] and [13].

In the present paper we will show that all these apparently different results are in fact
of the same kind, see Theorem 2, Theorem 3, Theorem 4, Corollary 3 and Theorem 5. Our
approach is the following: first, we prove the results for polynomials, then for continuous
functions and at the end for Riemann integrable functions.

Let us fix first some notations and notions.
Let a ∈ R ∪ {−∞}, f : (a,∞) → R and g : (a,∞) → R with the property that there

exists b � a with g(x) �= 0 for all x ∈ (b,∞). Throughout the paper, we will use the
following notation: f(x) ∼ g(x) as x → ∞ if and only if limx→∞

f(x)
g(x) = 1.

We recall that if g : N → [0,∞) is a function, its summatory function G : (0,∞) →
[0,∞) is defined by G(x) =

∑
n�x g(n), see [2, page 39].

If h : (0,∞) → R is such that there exists x0 > 0 with h(x) �= 0 for all x � x0 and
g : N → [0,∞), we say that the summatory function of g is equivalent to h if and only
if
∑

n�x g(n) � h(x) as x → ∞.
We denote by e the Euler number and we define the sequence (ek)k�0 by e0 = 1,

ek+1 = eek for k � 0. We also define ln1 x = ln x = loge x for x > 0 and lnk+1 x =
ln(lnk x) for k � 1 and x > ek−1.

Let k be a natural number. We write

C
(
[0, 1]k

)
:=

{
f : [0, 1]k → R

∣∣ f continuous on [0, 1]k
}
,

which is a real linear space with respect to usual addition and scalar multiplication
for functions and a Banach space with respect to the uniform norm i.e. ‖f‖u =
sup(x1,...,xk)∈[0,1]k |f(x1, . . . , xk)|.
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