

Contents lists available at ScienceDirect

Journal of Number Theory

Equidistribution of generalized Dedekind sums and exponential sums **

Byungheup Jun^a, Jungyun Lee^{b,*}

ARTICLE INFO

Article history: Received 12 July 2013 Received in revised form 16 October 2013 Accepted 16 October 2013 Available online 28 December 2013

Communicated by David Goss

Keywords: Dedekind sums Exponential sums Equidistribution

ABSTRACT

For the generalized Dedekind sums $s_{ij}(p,q)$ defined in association with the x^iy^j -coefficient of the Todd power series of the lattice cone in \mathbb{R}^2 generated by (1,0) and (p,q), we associate an exponential sum. We obtain this exponential sum using the cocycle property of the Todd series of 2d cones and the nonsingular cone decomposition along with the continued fraction of q/p. Its Weil bound is given for the modulus q applying the purity theorem of the cohomology of the related \mathbb{Q}_ℓ -sheaf due to Denef and Loeser. The Weil type bound of Denef and Loeser fulfills the Weyl equidistribution criterion for $R(i,j)q^{i+j-2}s_{ij}(p,q)$. As a special case, we recover the equidistribution result of the classical Dedekind sums multiplied by 12 not using the modular weight of the Dedekind $\eta(\tau)$.

 \odot 2013 Published by Elsevier Inc.

Contents

1.	Introduction	68
2.	Equidistribution of classical Dedekind sums	73

E-mail addresses: bhjun@yonsei.ac.kr (B. Jun), lee9311@kias.re.kr (J. Lee).

^a Department of Mathematics, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea

b School of Mathematics, Korea Institute for Advanced Study, Hoegiro 87, Dongdaemun-gu, Seoul 130-722, Republic of Korea

 $^{^{\,\}pm}$ The work of B. Jun is supported by the National Research Foundation (NRF) grant funded by the Korea government (MEST) (NRF-2012R1A1A2007726). The work of J. Lee is supported by the National Research Foundation (NRF) grant funded by the Korea government (MEST) (NRF-2011-0023688).

^{*} Corresponding author.

	2.1.	Rademacher's theorem	73
	2.2.	Kloosterman sums	73
	2.3.	Kloosterman sum and Dedekind sum	74
	2.4.	Weyl's equidistribution criterion	74
3.	Todd s	series of a lattice cone	75
	3.1.	Lattice cones	75
	3.2.	Todd series	75
	3.3.	Normalized Todd series and cocycle property	76
4.	Genera	alized Dedekind sum as coefficients of Todd series of a cone	78
5.	Genera	alized Dedekind sums and generalized Kloosterman sums	81
6.	Bound	s for generalized Kloosterman sums	85
	6.1.	Weight of ℓ -adic sheaf and exponential sums	85
	6.2.	Reduction to non-degenerate case	86
	6.3.	Proof of Theorem 1.3	89
Acknowledgments			
Refere		90	

1. Introduction

Classical Dedekind sums s(p,q) are defined for relatively prime integers p,q by

$$s(p,q) = \sum_{k=1}^{q} \left(\left(\frac{k}{q} \right) \right) \left(\left(\frac{kp}{q} \right) \right)$$

where ((x)) denotes the value of the 1st periodic Bernoulli function at x:

$$((x)) = \bar{B}_1(x) := \begin{cases} x - [x] - \frac{1}{2} & \text{for } x \notin \mathbb{Z}, \\ 0 & \text{for } x \in \mathbb{Z}. \end{cases}$$

This appears important in describing the change of the Dedekind eta function

$$\eta(\tau) = e^{2\pi i \tau/24} \prod_{n=1}^{\infty} (1 - e^{2\pi i n \tau}), \quad \tau \in \mathfrak{h},$$

under modular transformations. $\eta(\tau)$ is a 24th root of the modular discriminant

$$\Delta(\tau) = (12\pi)^{12} \eta^{24}(\tau)$$

up to some constant.

Due to the modularity after 24th power, under modular transformation $\tau \mapsto A\tau$, for $A = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \mathrm{SL}_2(\mathbb{Z})$, its logarithm satisfies the following formula due to Dedekind:

$$\log \eta \left(\frac{a\tau + b}{c\tau + d} \right) = \log \eta(\tau) + \frac{1}{4} \log \left(-(c\tau + d)^2 \right) + \pi i \phi(A) \tag{1}$$

Download English Version:

https://daneshyari.com/en/article/6415583

Download Persian Version:

https://daneshyari.com/article/6415583

<u>Daneshyari.com</u>