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The Euclidean minimum M (K) of a number field K is an
important numerical invariant that indicates whether K is
norm-Euclidean. When K is a non-CM field of unit rank 2
or higher, Cerri showed M(K), as the supremum in the
Euclidean spectrum Spec(K), is isolated and attained and
can be computed in finite time. We extend Cerri’s works by
applying recent dynamical results of Lindenstrauss and Wang.
In particular, the following facts are proved:

(1) For any number field K of unit rank 3 or higher, M (K)
is isolated and attained and Cerri’s algorithm computes
M(K) in finite time.

(2) If K is a non-CM field of unit rank 2 or higher, then the
computational complexity of M(K) is bounded in terms
of the degree, discriminant and regulator of K.
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1. Introduction
1.1. Background

A number field K is said to be norm-Euclidean if its ring of integers Ok is a Euclidean
domain with respect to the algebraic norm |Ng(+)|, that is, for all z,y € Ok, there exists
a € Ok such that |Ng(z —ay)| < |Nk(y)|- The Euclidean minimum of K is a numerical
indicator of whether K is norm-Euclidean or not.

Definition 1.1. The FEuclidean minimum of an element z € K is mg(z) =
infyeror [Nic().

The Euclidean spectrum of the number field K is the image {mg (z): € K} and the
EBuclidean minimum of K is M(K) = sup,cx mx ().

It is known that K is norm-Euclidean if M (K) > 1 and is not norm-Euclidean if
M(K) < 1. When M(K) = 1, it was proved by Cerri [Cer06] that if the unit rank of K
is at least 2 then it is not norm-Euclidean.

One can easily check that mg(z) > 0 and M(K) > 0. When K is totally real it
is part of a conjecture of Minkowski that M(K) < 279\/Dg where d and Dy denote
respectively the degree and discriminant of K. The conjecture has been proved only
for number fields of low degrees. However, weaker general upper bounds are available:
for totally real fields Chebotarev proved M(K) < 2‘5/@ (see for example [HW79,
§24.9]). For general number fields (not necessarily totally real), Bayer Fluckiger showed
in [BF06] that

M(K) < 279Dg. (1.1)
In the rest of this paper, we will always write

K= K ®q R. (1.2)
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