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Let K = Q(
√
d ) be a real quadratic field with odd class

number and its fundamental unit εd = x + y
√
d > 1 satisfies

NK/Q(εd) = 1. We give some congruence relations about x, y
explicitly.
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1. Introduction

Throughout this paper, let d be a squarefree positive integer and K = Q(
√
d ) a real

quadratic field. Let εd = x + y
√
d > 1 be the fundamental unit of K with x, y positive

rational numbers. It is well-known that K has odd class number with NK/Q(εd) = 1 if
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and only if d = p, 2p or p1p2 with p ≡ p1 ≡ p2 ≡ 3 mod 4 primes (cf. [2, p. 163]). If
d = p, 2p with p ≡ 3 mod 4 or d = p1p2 with p1p2 ≡ 1 mod 8, then x, y are integers.
If d = p1p2 with p1p2 ≡ 5 mod 8, it can happen that x, y are not integers, if so, then
ε3p1p2

does have integral coefficients. In order to avoid fractions, we will temporarily let
εd = x + y

√
d, where the positive integer pair (x, y) is the fundamental integer solution

of the Diophantine equation

x2 − dy2 = 1, (1.1)

and we shall refer to εd as the fundamental integral unit of K = Q(
√
d ) (cf. [1]). Thus

when d = p, 2p with p ≡ 3 mod 4 or d = p1p2 with p1p2 ≡ 1 mod 8, the fundamental unit
of K is the fundamental integral unit. And when d = p1p2 ≡ 5 mod 8, if the fundamental
unit of K is not the fundamental integral unit, then its third power is the fundamental
integral unit of K.

The aim of this paper is to prove the following theorem.

Theorem 1.1. Let K = Q(
√
d ) be a real quadratic field with odd class number and let

εd = x + y
√
d > 1 be the fundamental integral unit of K, then we have

(1) If d = p with p ≡ 3 mod 4, then x ≡ 0 mod 2. More precisely, if p ≡ 3 mod 8, then
x ≡ 2 mod 4; if p ≡ 7 mod 8, then x ≡ 0 mod 4.

(2) If d = 2p with p ≡ 3 mod 4, then y ≡ 0 mod 2 and x + y ≡ 3 mod 4.
(3) If d = p1p2 with p1 ≡ p2 ≡ 3 mod 4, then x ≡ 3 mod 4, y ≡ 0 mod 4.

The proof of Theorem 1.1 is given in Section 3. The main idea is to show that
K(√εd )/K is ramified at the dyadic prime ideal of K (i.e., the prime ideal of K ly-
ing above 2), which would lead to a contradiction if Theorem 1.1 was false. Before we
prove our theorem, we give some useful properties of 2-adic local fields in Section 2.
In the last section, we give some applications of Theorem 1.1 in solving Diophantine
equations.

2. Local computation

In this section, we compile several results for proving Theorem 1.1. For local field F ,
we let OF be the ring of integers of F and UF the unit group of OF . Let U (n)

F = 1+πnOF

where π is a uniformizer of F .

Lemma 2.1. Suppose F = Q2(
√
−1 ). Then π = −1 +

√
−1 is a uniformizer of F and

(1) U
(5)
F = (U (3)

F )2, i.e., every element of U (5)
F is a square.

(2) F (
√

3 ) = F (
√
−3 ) is unramified over F .

Proof. (1) That π is a uniformizer is because it is a root of the Eisenstein polynomial
x2 + 2x + 2. Since F/Q2 is totally ramified, UF = U

(1)
F and [UF : U (5)

F ] = 16. In our
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