On the coefficients of an eigenform

Shi-Chao Chen

Institute of Contemporary Mathematics, School of Mathematics and Information Sciences, Henan University, Kaifeng, 475001, PR China

A R T I C L E I N F O

Article history:

Received 20 May 2013
Received in revised form 27
November 2013
Accepted 28 November 2013
Available online 7 January 2014
Communicated by David Goss

$M S C$:

11F11
11F30
Keywords:
Lehmer's conjecture
Eigenforms
Nonvanishing

A B S T R A C T

Lehmer's conjecture on Ramanujan's tau function $\tau(n)$ asserts that $\tau(n) \neq 0$ for any $n \geqslant 1$. We consider a variant of Lehmer's conjecture. Let $f(z)=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z}$ be a normalized eigenform, where the a_{n} are rational integers for all n, and let $g(n)$ be a polynomial with integer coefficients. We bound the number of $n \leqslant x$ such that a_{n} and $g(n)$ have no common factor.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Ramanujan's tau function is denoted by

$$
\Delta(z)=\sum_{n=0}^{\infty} \tau(n) q^{n}:=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=q-24 q^{2}+252 q^{3}+\cdots
$$

where $q=e^{2 \pi i z}$. The well known Lehmer's conjecture [5,6] asserts that

$$
\tau(n) \neq 0
$$

E-mail address: schen@henu.edu.cn.
for any $n \geqslant 1$. This conjecture remains open for a long time and seems quite difficult. More generally, one can ask the vanishing of the Fourier coefficients of a Hecke eigenform.

In a recent work by V.K. Murty [8], a variant of Lehmer's conjecture has been considered. Let $S_{k}\left(\Gamma_{0}(N)\right)$ be the vector space of cusp forms of weight k for $\Gamma_{0}(N)$, and

$$
f(z)=\sum_{n=1}^{\infty} a_{n} q^{n} \in S_{k}\left(\Gamma_{0}(N)\right) \cap \mathbb{Z} \llbracket q \rrbracket
$$

be a normalized eigenform, where the coefficients a_{n} are rational integers. V.K. Murty's problem is that whether it is true that

$$
\sharp\left\{n \leqslant x:\left(n, a_{n}\right)=1\right\}=o(x)
$$

as $x \rightarrow \infty$. As explained in [8], this is a variant of Lehmer's conjecture. Moreover, V.K. Murty showed that

$$
\sharp\left\{n \leqslant x:\left(n, a_{n}\right)=1\right\} \ll \frac{x}{\log \log \log x} .
$$

This means that for almost all n, a_{n} and n have common divisor >1.
Note that for the Euler ϕ-function, Erdős [1] proved in 1948 that

$$
\sharp\{n \leqslant x:(n, \phi(n))\} \sim \frac{e^{-\gamma} x}{\log \log \log x} .
$$

Therefore V.K. Murty's result can be seen as a modular analogue of the result of Erdős. We remark that Murty's proof is based on the techniques of Erdős and those of [7,9].

When $f(z)$ has complex multiplication with weight $k=2$, a stronger result was obtained by Gun and V.K. Murty [2]. They proved that there is a constant U_{f} such that

$$
\sharp\left\{n \leqslant x:\left(n, a_{n}\right)=1\right\}=(1+o(1)) \frac{U_{f} x}{(\log x \log \log \log x)^{\frac{1}{2}}} .
$$

An analogous result was established by Laptyeva [4] for $k \geqslant 4$ under certain assumption.
In this note we will establish a general theorem analogous V.K. Murty's result. Our approach is more simpler, and based on the combinatorial sieve and a result of Serre.

Theorem 1. Let $N \geqslant 1$ be an integer and $f(z)=\sum_{n=1}^{\infty} a_{n} q^{n} \in S_{k}\left(\Gamma_{0}(N)\right) \cap \mathbb{Z} \llbracket q \rrbracket$ be a normalized eigenform, where the a_{n} are rational integers. Moreover, let $g(n)$ be a polynomial with integer coefficients and degree d. Suppose that $\rho(p)$ is the number of the solutions of $g(n) \equiv 0(\bmod p)$ and satisfies

$$
\rho(p)<p
$$

https://daneshyari.com/en/article/6415588

Download Persian Version:
https://daneshyari.com/article/6415588

Daneshyari.com

