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In this note we give an extension of the well-known Menon’s
identity to residually finite Dedekind domains.
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1. Introduction

The starting point for this paper is an unusual relation between the divisor function
and the Euler totient function, which states that for every n ∈ N = {1, 2, . . .}

∑
a∈U(Zn)

gcd(a− 1, n) = ϕ(n)τ(n), (1)

where U(Zn) = {a ∈ Zn: gcd(n, a) = 1}, ϕ is the Euler totient function and τ(n) is
the number of positive divisors of n. This interesting arithmetical identity, known as
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Menon’s identity, is due to P.K. Menon [12]. This identity has been generalized by many
authors (see e.g. [5–7,16–18]). However, all these generalizations are in the setting of
the traditional domain of the rational integers. As is well-known there are other number
systems that are in many ways analogous to the rational integers. For instance, the ring
F[X] of all polynomials in one variable with coefficients in a field F, the p-adic integers,
the ring OK of integers in a number field K or more generally a Dedekind domain. The
question naturally arises as to whether we can establish similar assertions in a more
general framework.

The aim of this paper is to extend Menon’s identity to a special case of Dedekind
domains, namely, residually finite Dedekind domains. That is, Dedekind domains D

such that for each non-zero ideal n of D, the residue class ring D/n is finite. The positive
rational integer N(n) defined by

N(n) = |D/n|

is called the norm of the ideal n.
Residually finite rings (also called rings of finite norm property) have historically

commanded strong interest (see e.g. [8,11]). The reason for this historical interest comes
from algebraic number theory. Indeed, the ring OK of integers in a number field (or more
generally, in a global field) is a residually finite Dedekind domain.

As is well-known factorization into irreducible elements frequently fails for Dedekind
domains. But using ideals in place of elements we can save unique factorization. Unique
factorization of ideals in a Dedekind domain permits calculations that are analogous to
some familiar manipulations involving ordinary integers (for details, see [13, Chapter 1]).
Moreover, we can define a generalized Euler totient function type for a non-zero ideal
of a Dedekind domain. Let n be a non-zero ideal in a Dedekind domain D, then the
generalized Euler totient function, which is denoted by ϕD(n), is defined to be the order
of the multiplicative group of units in the factor ring D/n, with the convention that
ϕD(D) = 1. That is,

ϕD(n) =
{

1 if n = D,

|U(D/n)| otherwise.

Notice that, since we only consider residually finite Dedekind domains, it follows that ϕD

is a finite valued function. This function shares the same basic properties as the usual
Euler’s totient function. For example

ϕD(n) = N(n)
∏
p|n

(
1 − 1

N(p)

)
,
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