Integral-valued polynomials over sets of algebraic integers of bounded degree

Giulio Peruginelli
Institut für Analysis und Comput. Number Theory, Technische Universität, Steyrergasse 30, A-8010 Graz, Austria

A R T I C L E I N F O

Article history

Received 7 January 2013
Received in revised form 3 November 2013
Accepted 4 November 2013
Available online 3 January 2014
Communicated by David Goss

MSC:

13B25
13F20
11C

Keywords:

Integer-valued polynomial
Algebraic integers with bounded
degree
Prüfer domain
Polynomially dense subset
Integral closure
Pullback

A B S T R A C T

Let K be a number field of degree n with ring of integers O_{K}. By means of a criterion of Gilmer for polynomially dense subsets of the ring of integers of a number field, we show that, if $h \in K[X]$ maps every element of O_{K} of degree n to an algebraic integer, then $h(X)$ is integral-valued over O_{K}, that is, $h\left(O_{K}\right) \subset O_{K}$. A similar property holds if we consider the set of all algebraic integers of degree n and a polynomial $f \in \mathbb{Q}[X]:$ if $f(\alpha)$ is integral over \mathbb{Z} for every algebraic integer α of degree n, then $f(\beta)$ is integral over \mathbb{Z} for every algebraic integer β of degree smaller than n. This second result is established by proving that the integral closure of the ring of polynomials in $\mathbb{Q}[X]$ which are integer-valued over the set of matrices $M_{n}(\mathbb{Z})$ is equal to the ring of integralvalued polynomials over the set of algebraic integers of degree equal to n.
© 2014 The Author. Published by Elsevier Inc.
Open access under CC BY license.

[^0]
1. Introduction

Let K be a number field of degree n over \mathbb{Q} with ring of integers O_{K}. Given $f \in K[X]$ and $\alpha \in O_{K}$, the evaluation of $f(X)$ at α is an element of K. If $f(\alpha)$ is in O_{K} we say that $f(X)$ is integral-valued on α. If this condition holds for every $\alpha \in O_{K}$, we say that $f(X)$ is integral-valued over O_{K}. The set of such polynomials forms a ring, usually denoted by:

$$
\operatorname{Int}\left(O_{K}\right) \doteqdot\left\{f \in K[X] \mid f\left(O_{K}\right) \subset O_{K}\right\}
$$

Obviously, $\operatorname{Int}\left(O_{K}\right) \supset O_{K}[X]$ and this is a strict containment (over \mathbb{Z}, consider $X(X-1) / 2)$. A classical problem regarding integral-valued polynomials is to find proper subsets S of O_{K} such that if $f(X)$ is any polynomial in $K[X]$ such that $f(s)$ is in O_{K} for all s in S then $f(X)$ is integral-valued over O_{K}. A subset S of O_{K} with this property is usually called a polynomially dense subset of O_{K}. For example, it is easy to see that cofinite subsets of O_{K} have this property. For a general reference of polynomially dense subsets and the so-called polynomial closure see [1] (see also the references contained in there). Obviously, for a polynomially dense subset S we have $\operatorname{Int}\left(S, O_{K}\right) \doteqdot\{f \in K[X] \mid$ $\left.f(S) \subset O_{K}\right\}=\operatorname{Int}\left(O_{K}\right)$ (in general we only have one containment). Gilmer gave a criterion which characterizes polynomially dense subsets of a Dedekind domain with finite residue fields [6]. His result was later elaborated by McQuillan in this way ([9]; we state it for the ring of integers of a number field): a subset S of O_{K} is polynomially dense in O_{K} if and only if, for every non-zero prime ideal P of O_{K}, S is dense in O_{K} with respect to the P-adic topology. By means of this criterion, we show here the following theorem.

Theorem 1.1. Let K be a number field of degree n over \mathbb{Q}. Let $O_{K, n}$ be the set of algebraic integers of K of degree n. Then $O_{K, n}$ is polynomially dense in O_{K}.

The previous problem concerns the integrality of the values of a polynomial with coefficients in a number field K over the set of algebraic integers of K. We also address here our interest to the study of the integrality of the values of a polynomial with rational coefficients over the set of algebraic integers of a proper finite extension of \mathbb{Q}, or, more in general, over a set of algebraic integers which lie in possibly infinitely many number fields, but of bounded degree. In this direction, Loper and Werner introduced in [8] the following ring of integral-valued polynomials:

$$
\operatorname{Int}_{\mathbb{Q}}\left(O_{K}\right) \doteqdot\left\{f \in \mathbb{Q}[X] \mid f\left(O_{K}\right) \subset O_{K}\right\}
$$

This ring is the contraction to $\mathbb{Q}[X]$ of $\operatorname{Int}\left(O_{K}\right)$. It is easy to see that it is a subring of the usual ring of integer-valued polynomials $\operatorname{Int}(\mathbb{Z})=\{f \in \mathbb{Q}[X] \mid f(\mathbb{Z}) \subset \mathbb{Z}\}$. Moreover, this is always a strict containment: take any prime integer p such that there exists a prime

https://daneshyari.com/en/article/6415596

Download Persian Version:

https://daneshyari.com/article/6415596

Daneshyari.com

[^0]: E-mail address: peruginelli@math.tugraz.at.

