

Contents lists available at ScienceDirect

Journal of Number Theory

Integral-valued polynomials over sets of algebraic integers of bounded degree

Giulio Peruginelli

Institut für Analysis und Comput. Number Theory, Technische Universität, Steyrergasse 30, A-8010 Graz, Austria

ARTICLE INFO

Article history:

Received 7 January 2013 Received in revised form 3 November 2013

Accepted 4 November 2013 Available online 3 January 2014 Communicated by David Goss

MSC: 13B25

13F20 11C

Keywords:

Integer-valued polynomial Algebraic integers with bounded degree Prüfer domain Polynomially dense subset Integral closure Pullback

ABSTRACT

Let K be a number field of degree n with ring of integers O_K . By means of a criterion of Gilmer for polynomially dense subsets of the ring of integers of a number field, we show that, if $h \in K[X]$ maps every element of O_K of degree n to an algebraic integer, then h(X) is integral-valued over O_K , that is, $h(O_K) \subset O_K$. A similar property holds if we consider the set of all algebraic integers of degree n and a polynomial $f \in \mathbb{Q}[X]$: if $f(\alpha)$ is integral over \mathbb{Z} for every algebraic integer α of degree n, then $f(\beta)$ is integral over \mathbb{Z} for every algebraic integer β of degree smaller than n. This second result is established by proving that the integral closure of the ring of polynomials in $\mathbb{Q}[X]$ which are integer-valued over the set of matrices $M_n(\mathbb{Z})$ is equal to the ring of integral-valued polynomials over the set of algebraic integers of degree equal to n.

© 2014 The Author. Published by Elsevier Inc. Open access under CC BY license.

1. Introduction

Let K be a number field of degree n over \mathbb{Q} with ring of integers O_K . Given $f \in K[X]$ and $\alpha \in O_K$, the evaluation of f(X) at α is an element of K. If $f(\alpha)$ is in O_K we say that f(X) is integral-valued on α . If this condition holds for every $\alpha \in O_K$, we say that f(X) is integral-valued over O_K . The set of such polynomials forms a ring, usually denoted by:

$$Int(O_K) \doteqdot \{ f \in K[X] \mid f(O_K) \subset O_K \}.$$

Obviously, $\operatorname{Int}(O_K) \supset O_K[X]$ and this is a strict containment (over \mathbb{Z} , consider X(X-1)/2). A classical problem regarding integral-valued polynomials is to find proper subsets S of O_K such that if f(X) is any polynomial in K[X] such that f(s) is in O_K for all s in S then f(X) is integral-valued over O_K . A subset S of O_K with this property is usually called a polynomially dense subset of O_K . For example, it is easy to see that cofinite subsets of O_K have this property. For a general reference of polynomially dense subsets and the so-called polynomial closure see [1] (see also the references contained in there). Obviously, for a polynomially dense subset S we have $\operatorname{Int}(S, O_K) = \{f \in K[X] \mid f(S) \subset O_K\} = \operatorname{Int}(O_K)$ (in general we only have one containment). Gilmer gave a criterion which characterizes polynomially dense subsets of a Dedekind domain with finite residue fields [6]. His result was later elaborated by McQuillan in this way ([9]; we state it for the ring of integers of a number field): a subset S of O_K is polynomially dense in O_K if and only if, for every non-zero prime ideal P of O_K , S is dense in O_K with respect to the P-adic topology. By means of this criterion, we show here the following theorem.

Theorem 1.1. Let K be a number field of degree n over \mathbb{Q} . Let $O_{K,n}$ be the set of algebraic integers of K of degree n. Then $O_{K,n}$ is polynomially dense in O_K .

The previous problem concerns the integrality of the values of a polynomial with coefficients in a number field K over the set of algebraic integers of K. We also address here our interest to the study of the integrality of the values of a polynomial with rational coefficients over the set of algebraic integers of a proper finite extension of \mathbb{Q} , or, more in general, over a set of algebraic integers which lie in possibly infinitely many number fields, but of bounded degree. In this direction, Loper and Werner introduced in [8] the following ring of integral-valued polynomials:

$$\operatorname{Int}_{\mathbb{Q}}(O_K) \doteq \{ f \in \mathbb{Q}[X] \mid f(O_K) \subset O_K \}.$$

This ring is the contraction to $\mathbb{Q}[X]$ of $\operatorname{Int}(O_K)$. It is easy to see that it is a subring of the usual ring of integer-valued polynomials $\operatorname{Int}(\mathbb{Z}) = \{ f \in \mathbb{Q}[X] \mid f(\mathbb{Z}) \subset \mathbb{Z} \}$. Moreover, this is always a strict containment: take any prime integer p such that there exists a prime

Download English Version:

https://daneshyari.com/en/article/6415596

Download Persian Version:

https://daneshyari.com/article/6415596

<u>Daneshyari.com</u>