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In this note, by the umbral calculus method, the Sun and Zagier
congruences involving the Bell numbers and the derangement
numbers are generalized to the polynomial cases. Some special
congruences are also presented.
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1. Introduction

It is well known that the first and second kind Stirling numbers s(m, j) and S(m, j) [11] are
defined respectively by

x(x − 1) · · · (x − m + 1) =
m∑

j=0

s(m, j)x j, (1.1)

m∑
j=0

S(m, j)x(x − 1) · · · (x − j + 1) = xm. (1.2)
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The Bell polynomials {Bm(x)}m�0 are defined by

Bm(x) =
m∑

j=0

S(m, j)x j .

It is clear that Bm(1) is the m-th Bell number, denoted by Bm , counting the number of partitions of
[m] = {1,2, . . . ,m} (with B0 = 1). The Bell polynomials Bm(x) satisfy the recurrence

Bm+1(x) = x
m∑

j=0

(
m

j

)
B j(x). (1.3)

The derangement polynomials {Dm(x)}m�0 are defined by

Dm(x) =
m∑

j=0

(
m

j

)
j!(x − 1)m− j.

Clearly, Dm(1) = m! and Dm(0) is the m-th derangement number, denoted by Dm , counting the num-
ber of fixed-point-free permutations on [m] (with D0 = 1). The derangement polynomials Dm(x), also
called x-factorials of m, have been considerably investigated by Eriksen, Freij and Wästlund [4], Sun
and Zhuang [16]. They obey the recursive relation

Dm(x) = mDm−1(x) + (x − 1)m. (1.4)

Recently, Sun [12] discovered experimentally that for a fixed positive integer m the sum∑p−1
k=0 Bk/(−m)k modulo a prime p not dividing m is independent of p, a typical case being

p−1∑
k=0

Bk

(−8)k
≡ −1853 (mod p) for all primes p �= 2.

Later, Sun and Zagier [15] confirmed this conjecture and proved the nice result.

Theorem 1.1. For any integer m � 1 and any prime p � m, there holds

(−x)m
p−1∑
k=1

Bk(x)

(−m)k
≡ (−x)p

m−1∑
k=0

(m − 1)!
k! (−x)k (

mod pZp[x]),

where Zp denotes the ring of p-adic integers. Particularly, the case x = 1 generates

p−1∑
k=1

Bk

(−m)k
≡ (−1)m−1 Dm−1 (mod p). (1.5)

Here for two polynomials P (x), Q (x) ∈ Zp[x], by P (x) ≡ Q (x) (mod pZp[x]) we mean that the
corresponding coefficients of P (x) and Q (x) are congruent modulo p.

In this note, we establish a more general result of Sun and Zagier’s congruence.
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