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Let H be a definite quaternion algebra over Q with discriminant
D H and R a maximal order of H . We denote by Gn a quater-
nionic unitary group and put Γn = Gn(Q) ∩ GL2n(R). Let Sκ (Γn)

be the space of cusp forms of weight κ with respect to Γn on
the quaternion half-space of degree n. We construct a lifting from
primitive forms in Sk(SL2(Z)) to Sk+2n−2(Γn) and a lifting from
primitive forms in Sk(Γ0(d)) to Sk+2(Γ2), where d is a factor of
D H . These liftings are generalizations of the Maass lifting investi-
gated by Krieg.

© 2010 Elsevier Inc. All rights reserved.

To my father

0. Introduction

The purpose of this paper is to construct a lifting that associates to an elliptic cusp form a cusp
form on a quaternionic unitary group. This is a quaternionic modular analogue of the liftings con-
structed by Ikeda [14,15]. In a similar fashion, Ikeda constructed, from an elliptic cusp form, a Siegel
cusp form in [14] and a hermitian cusp form in [15].

Let us describe our results. Let H be a definite quaternion algebra over Q and ι the main involution
of H . Fix a maximal order R of H . Let H = H ⊗Q R, H p = H ⊗Q Qp and R p = R ⊗Z Zp . Put x∗ = t xι

for x ∈ Mn(H).
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Let Gn be a connected algebraic group defined over Q whose group of Q-valued points is given by

Gn(Q)=
{
α ∈ SL2n(H)

∣∣∣ α( 0 −1n

1n 0

)
α∗ =

(
0 −1n

1n 0

)}
.

The modular group is defined to be Γn = GL2n(R)∩ Gn(Q).
For a ring O with involution ι , we put Sn(O) = {x ∈ Mn(O) | t xι = x}. The quaternion upper half-

space of degree n is defined by

Hn = {Z = X + √−1Y ∈ Sn(H)⊗R C
∣∣ X ∈ Sn(H), 0 < Y ∈ Sn(H)

}
.

For any Q-algebra D , let ν , τ : Mn(H ⊗Q D) → D be the reduced norm and the reduced trace
on Mn(H ⊗Q D) respectively. Put λ = 1

2τ . We define a polynomial map Paf : Sn(H) → Q, using the
relations

Paf(1n)= 1, Paf(X)2 = ν(X), X ∈ Sn(H).

Let κ be an even integer. For α =
(

a b
c d

)
∈ Gn(R), Z ∈ Hn and a function F on Hn , we put

αZ = (aZ + b)(c Z + d)−1, F |κα(Z)= ν(c Z + d)−κ/2 F (αZ).

When n � 2, a modular form F of weight κ is a holomorphic function on Hn which satisfies F |κγ = F
for every γ ∈ Γn . Put

Tn = {h ∈ Sn(H)
∣∣ λ(hβ) ∈ Z for every β ∈ Sn(R)

}
and let T +

n denote the set of positive definite elements of Tn . A modular form F is called a cusp form
if it has a Fourier expansion of the form

F (Z)=
∑

h∈T +
n

A F (h)e
(
λ(h Z)

)
(cf. Remark 1.3). Let Sκ (Γn) be the space of cusp forms on Hn of weight κ .

Krieg systematically developed the theory of modular forms on Hn in [22], but he makes the
following assumptions:

(I) H is the Hurwitz quaternion, i.e., H has a basis {1, i, j,k} over Q such that k = i j = − ji, i2 =
j2 = −1;

(II) R is the Hurwitz order, i.e., R = Z[i, j,k, 1+i+ j+k
2 ].

The present paper investigates modular forms with respect to the group Γn which comes from an
arbitrary definite quaternion algebra over Q.

Fix a rational prime p. The Siegel series attached to h ∈ Tn is defined by

bp(h, s)=
∑

β∈Sn(H p)/Sn(R p)

ep
(−λ(hβ)

)
ν[β]−s/2,

where ν[β] = [βRn
p + Rn

p : Rn
p]1/2.

Let D H be the discriminant of H . Put Dh = D[n/2]
H Paf h. If h is nondegenerate, then there exists a

polynomial F p,h such that
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