The Hua matrix and inequalities related to contractive matrices

Minghua Lin
Department of Mathematics, Shanghai University, Shanghai, 200444, China

A R T I C L E I N F O

Article history:

Received 8 April 2016
Accepted 2 September 2016
Available online 8 September 2016
Submitted by P. Semrl

MSC:
 15A45
 15A42
 47A30

Keywords:
Hua matrix
Contractive matrix
Singular value
Eigenvalue
Inequality

A B S T R A C T
We first deny a conjecture raised in Xu et al. (2011) [14] and
then we present some eigenvalue or singular value inequalities
related to contractive matrices.
\qquad © 2016 Elsevier Inc. All rights reserved.

1. Introduction

The Hua matrix is

$$
\mathbf{H}=\left[\begin{array}{ll}
\left(I-A^{*} A\right)^{-1} & \left(I-B^{*} A\right)^{-1} \\
\left(I-A^{*} B\right)^{-1} & \left(I-B^{*} B\right)^{-1}
\end{array}\right],
$$

where A, B are $n \times n$ strictly contractive matrices (i.e., matrices whose spectral norm is less than one). This block matrix first appears in Hua's study of the theory of functions of several complex variables; see [9]. The Hua matrix is a source for matrix inequalities. For example, the positivity of the Hua matrix immediately leads to

$$
\begin{equation*}
\left|\operatorname{det}\left(I-A^{*} B\right)\right|^{2} \geq \operatorname{det}\left(I-A^{*} A\right) \operatorname{det}\left(I-B^{*} B\right), \tag{1.1}
\end{equation*}
$$

which is known as Hua's determinantal inequality in the literature (e.g., [16, p. 231]). More examples can be found in $[3,4,12]$. There is a renewed interest in the Hua matrix and its analogues in recent years; see $[2,10,11,13,14]$. A remarkable property about the Hua matrix is the positive partial transpose property. That is, the partial transpose of \mathbf{H}, viz.,

$$
\mathbf{H}^{\tau}=\left[\begin{array}{ll}
\left(I-A^{*} A\right)^{-1} & \left(I-A^{*} B\right)^{-1} \\
\left(I-B^{*} A\right)^{-1} & \left(I-B^{*} B\right)^{-1}
\end{array}\right]
$$

is again positive semidefinite.
In this article, we first address a conjecture raised in [14], then we present some eigenvalue or singular value inequalities involving contractive matrices. The paper is concluded with some comments and a new conjecture along this line of study.

The remaining of this section is devoted to some notation used in this article. Let \mathbb{M}_{n} be the set of all $n \times n$ complex matrices; the identity matrix of \mathbb{M}_{n} is denoted by I. For any $X \in \mathbb{M}_{n}, X^{*}$ stands for the conjugate transpose of X. For two Hermitian matrices X, Y of the same size, we write $X \geq Y$ to mean $X-Y$ is positive semidefinite. Saying that $X \in \mathbb{M}_{n}$ is contractive is the same as saying $I \geq X^{*} X$. If the eigenvalues of a square matrix X are all real, then we denote $\lambda_{j}(X)$ the j th largest eigenvalue of X. The singular values of a complex matrix X are the eigenvalues of $|X|:=\left(X^{*} X\right)^{1 / 2}$, and we denote $\sigma_{j}(X):=\lambda_{j}(|X|)$. The geometric mean of two positive definite matrices $X, Y \in \mathbb{M}_{n}$ is defined as $X \sharp Y:=X^{1 / 2}\left(X^{-1 / 2} Y X^{-1 / 2}\right)^{1 / 2} X^{1 / 2}$. Its weighted version is defined as $X \sharp_{t} Y:=X^{1 / 2}\left(X^{-1 / 2} Y X^{-1 / 2}\right)^{t} X^{1 / 2}, 0 \leq t \leq 1$. It is known that the notion of (weighted) geometric mean could be extended to cover all positive semidefinite matrices; see [5, p. 107].

2. A conjecture in [14]

When considering possible extensions of the Hua matrix to higher number of blocks, it is known (see $[2,13]$) that in general the following block matrices are no longer positive semidefinite for $m \geq 3$:

$$
\mathbf{H}_{(m)}=\left[\begin{array}{cccc}
\left(I-A_{1}^{*} A_{1}\right)^{-1} & \left(I-A_{2}^{*} A_{1}\right)^{-1} & \ldots & \left(I-A_{m}^{*} A_{1}\right)^{-1} \\
\left(I-A_{1}^{*} A_{2}\right)^{-1} & \left(I-A_{2}^{*} A_{2}\right)^{-1} & \cdots & \left(I-A_{m}^{*} A_{2}\right)^{-1} \\
\vdots & \vdots & & \vdots \\
\left(I-A_{1}^{*} A_{m}\right)^{-1} & \left(I-A_{2}^{*} A_{m}\right)^{-1} & \cdots & \left(I-A_{m}^{*} A_{m}\right)^{-1}
\end{array}\right]
$$

https://daneshyari.com/en/article/6415953

Download Persian Version:
https://daneshyari.com/article/6415953

Daneshyari.com

