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The result that goes essentially back to Euler [15] says that 
for any element a of a unital Banach algebra A with unit u, 
the limit limε→0+(u + εa)[ε−1t] (where [·] denotes the integral 
part) exists for all t ∈ R and equals eta. As developed by E. 
Hille [22, Thm. 12.2.1], in the case where a is replaced by the 
generator A of a strongly continuous semigroup {etA, t ≥ 0}
in a Banach space X, a proper counterpart of this formula is 
etA = limε→0+(IX−εA)−[ε−1t] strongly in X. Motivated by an 
example from mathematical biology (related to Rotenberg’s 
model of cell growth [40]) we study convergence of a similar 
approximation in which u (resp. IX) is replaced by j ∈ A (resp. 
J ∈ L(X)) such that for some � ≥ 2, j� = u (resp. J� = IX).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

While, with few exceptions, impact of mathematics on biology is still rather disputable 
(see, however, the recent paper [39] and its predecessor [38]), mathematical biology con-
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tinues to surprise mathematicians by the constant flow of interesting objects to study. 
For example, the Wright–Fisher model of population genetics (see e.g. [16,17]) has pro-
vided proper intuitions for the discovery of the general form of boundary conditions for 
linear parabolic partial differential equations, known today as Feller–Wentzell boundary 
conditions [18–20,44]. The same model had a considerable impact on the theory of ex-
changeability of random processes [27], hiding in particular a mathematical diamond, i.e., 
the Kingman–Tajima coalescence process [16,26,28,42] (see also the survey article [31]). 
In fact, any list of mathematical inspirations coming from biology seems to be doomed 
to be incomplete (see e.g. [1,5,9,16,24,25,34,43]).

The story this paper tells is also of biological origin, though perhaps not as remarkable 
as the stories just touched upon. To begin, for real numbers a and b, let L1(a, b) be the 
space of integrable functions on (a, b). In the Rotenberg’s model of cell division [40], 
popularized by Baulanouar’s papers (see [10,11] and other articles cited therein), cells 
in a population are characterized by maturity parameter μ ∈ [0, 1] and the speed of 
maturation v. Thus, in a version of the model in which the set V of possible speeds is 
finite i.e., V = {vi, i ∈ N}, where N = {1, . . . , N} for some N ∈ N, and φi ∈ L1(0, 1) is 
the density of cells with speed vi at time 0, then for μ > 0 and sufficiently small t, this 
density at time t > 0 is

φi(t, μ) = φi(μ− vit).

(In the original model [40], V is equal to [0, ∞), but the variant with V finite also leads to 
interesting theory, linking the model in particular with flows on networks, see [2,4,3,33].) 
Upon reaching maturity μ = 1, cells divide and each of daughter cells’ maturation speeds 
may differ from their mother’s. Moreover, some cells degenerate, and come back to the 
state μ = 0 while retaining their maturation speed. A balance condition ‘flux in equals 
flux out’ says therefore that

viφi(t, 0) = p
∑
j �=i

πjivjφj(t, 1) + qviφi(t, 1),

where p > 0 is the average number of viable cells after division, q ∈ [0, 1) is the number 
of degenerating cells, and πji is the probability that a cell of maturation speed vj will 
have a daughter of maturation speed vi. This equation, sometimes termed the Lebowitz–
Rubinow boundary condition [12] (although the adjective transmission would be more 
appropriate here), thus connects the value of the vector φ(t) = (φi(t))i∈N ∈ [L1(0, 1)]N
of densities φi(t) at μ = 0, with this at μ = 1:

φ(t, 0) = qφ(t, 1) + pKφ(t, 1), (1)

where K is an appropriate N ×N matrix.
In [2,4], Banasiak and Falkiewicz study a singular perturbation of the Rotenberg 

model in which the velocities become simultaneously infinite, while the cells have an 
increasing tendency to degenerate. In particular, one may think of q = 1 − ε and p = ε
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