Characterization of graphs whose signature equals the number of odd cycles

Xiaobin $\mathrm{Ma}^{*, 1}$, Dein Wong, Fenglei Tian
Department of Mathematics, China University of Mining and Technology, Xuzhou 221116, China

A R T I C L E I N F O

Article history:

Received 8 October 2015
Accepted 12 September 2016
Available online 16 September 2016
Submitted by R. Brualdi

MSC:

05C50

Keywords:

Signature of a graph
Positive inertia index
Nullity

Abstract

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. The signature $s(G)$ of G is the difference between the number of positive eigenvalues and the number of negative eigenvalues of the adjacency matrix $A(G)$. In [20], it was proved that $-c_{1}(G) \leq s(G) \leq c_{1}(G)$, where $c_{1}(G)$ denotes the number of odd cycles in G. A problem arises naturally: What graphs have signature attaining the upper bound $c_{1}(G)$ (resp., the lower bound $-c_{1}(G)$)? In this paper, we focus our attention on this problem, characterizing graphs G whose signature equals $c_{1}(G)$ (resp., $-c_{1}(G)$). © 2016 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper we consider simple graphs. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The adjacency matrix $A(G)$ of G is defined to be a symmetric matrix $\left[a_{x y}\right.$] with $a_{x y}=1$ if $x \in V(G)$ is adjacent to $y \in V(G)$, and $a_{x y}=0$ otherwise. The eigenvalues of $A(G)$ are said to be the eigenvalues of G, and they form the spec-

[^0]trum of G. The number of positive eigenvalues (resp., negative eigenvalues; resp., zero eigenvalues) of G is called the positive inertia index (resp., the negative inertia index; resp., the nullity) of G, and is denoted by $p(G)$ (resp., $n(G)$; resp., $\eta(G)$). The rank of G, denoted by $r(G)$, refers to the rank of $A(G)$. Obviously, $p(G)+n(G)+\eta(G)=|V(G)|$ and $p(G)+n(G)=r(G)$. We call $p(G)-n(G)$ the signature of G and denote it by $s(G)$.

Motivated by the discovery that the nullity of a graph is related to the stability of the molecule represented by the graph (see [1] or [4] for details), some authors pay a lot of attention to the nullity of graphs and obtain abundant results (see [3-6,9-14,16-19, 21-24]). Recently, partly motivated by these results on nullity of graphs, some authors set foot on describing the positive and the negative inertia index of a graph, and obtained some elementary results for a connected graph with at most three cycles (see [8,20,27]). Here, we particularly mention the paper [20], where the authors posed the following conjecture about the signature $s(G)$ of G.

Conjecture 1.1. (Conjecture, [20]) Let G be a simple graph. Then $-c_{3}(G) \leq s(G) \leq$ $c_{5}(G)$, where $c_{3}(G)$ denotes the number of cycles in G of length $4 k+3$, and $c_{5}(G)$ denotes the number of cycles in G of length $4 l+5$ with k, l non-negative integers.

Till now, the conjecture is confirmed only for some special graphs. In [26], the conjecture was proved for line graphs of simple graphs and power trees. In [25] and [15], the conjecture was proved to be true for graphs with vertex-disjoint cycles and for graphs with edge-disjoint cycles, respectively. Ma et al. [20] proved the conjecture for trees, unicyclic and bicyclic graphs, and they obtained a weaker result as follows.

Proposition 1.2. (Theorem 5.2, [20]) Let G be a simple graph. Then $-c_{1}(G) \leq s(G) \leq$ $c_{1}(G)$, where $c_{1}(G)$ denotes the number of odd cycles in G.

Now, a problem arises naturally: What graphs have signature attaining the upper bound $c_{1}(G)$ (resp., the lower bound $-c_{1}(G)$)?

In this paper, we are devoted to solving the above problem, characterizing graphs G whose signature equals $c_{1}(G)$ (resp., $-c_{1}(G)$).

In Section 2, we introduce some known results, in Section 3 we characterize graphs G whose signature equals $c_{1}(G)$, and in the last section we characterize graphs G whose signature equals $-c_{1}(G)$.

2. Notation and some known results

A graph H is called an induced subgraph of G if two vertices of $V(H)$ are adjacent in H if and only if they are adjacent in G. Denote by $G-S$, for $S \subseteq V(G)$, the induced subgraph obtained from G by deleting the vertices in S together with all edges incident to them. Sometimes we use the notation $G-H$ instead of $G-V(H)$ if H is an induced subgraph of G. For an induced subgraph H and a vertex x outside H, the induced

https://daneshyari.com/en/article/6415967

Download Persian Version:

https://daneshyari.com/article/6415967

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: maxiaobinzaozhuang@163.com (X. Ma).
 ${ }^{1}$ Supported by "the National Natural Science Foundation of China (No. 11571360)".

