Projection on the intersection of convex sets

Marko Stošićc ${ }^{\text {a,b,*, }}$, João Xavier ${ }^{\text {c }}$, Marija Dodig ${ }^{\text {d,b }}$
${ }^{\text {a }}$ CAMGSD, Departamento de Matemática, Instituto Superior Técnico,
Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
${ }^{\text {b }}$ Mathematical Institute SANU, Knez Mihajlova 36, 11000 Belgrade, Serbia
${ }^{\text {c }}$ Institute for Systems and Robotics, Instituto Superior Técnico, University of Lisbon, Lisbon 1600-011, Portugal
${ }^{\text {d }}$ CEAFEL, Departamento de Matématica, Universidade de Lisboa, Edificio C6, Campo Grande, 1749-016 Lisbon, Portugal

A R T I C L E I N F O

Article history:

Received 30 October 2015
Accepted 25 July 2016
Available online 28 July 2016
Submitted by B. Lemmens

MSC:

90C53
15A09

Keywords:
Projections
Semi-smooth Newton algorithm
Generalized Jacobian

A B S TRACT

In this paper, we give a solution of the problem of projecting a point onto the intersection of several closed convex sets, when a projection on each individual convex set is known. The existing solution methods for this problem are sequential in nature. Here, we propose a highly parallelizable method. The key idea in our approach is the reformulation of the original problem as a system of semi-smooth equations. The benefits of the proposed reformulation are twofold: (a) a fast semismooth Newton iterative technique based on Clarke's generalized gradients becomes applicable and (b) the mechanics of the iterative technique is such that an almost decentralized solution method emerges. We proved that the corresponding semi-smooth Newton algorithm converges near the optimal point (quadratically). These features make the overall method attractive for distributed computing platforms, e.g. sensor networks.
© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let $E_{i}, i=1, \ldots, n$, be convex, closed subsets of \mathbb{R}^{m}. Suppose that $E=\bigcap_{i=1}^{n} E_{i}$ is non-empty. Let $p \in \mathbb{R}^{m}$ be a point.

By $P_{E_{i}}(p)$ we denote a projection of a point p to a set E_{i}. It is well-known that the projection of p on the set E exists and is unique. Thus, we have the following problem:

Problem 1. Find a projection of the point p on the set E.
We assume that the projections of a point $p, P_{E_{i}}(p)$ on each individual set $E_{i}, i=$ $1, \ldots, n$, are well known and easy to handle. However, the projection of a point p on the intersection $E\left(P_{E}(p)\right)$ is very hard to compute:

Problem 1 can be alternatively written as the following optimization problem:

$$
\begin{equation*}
\underset{\text { subject to } x \in E}{\operatorname{minimize}}\|x-p\|^{2} \tag{1}
\end{equation*}
$$

Problem 1 finds many applications in practice, e.g. in medical imaging, computerized tomography, stat fusion architecture, solving convex problems with strong duality, etc. - see [3] and the references therein.

There already exist many algorithms for resolving this problem. All of them are based on alternating or cyclic projection onto each set E_{i}. Von Neumann [10] studied the special case $n=2$, where each E_{i} is affine subspace, and Halperin [8] analyzed the case $n>2$. See [4] for more exhaustive results on the affine case. The non-affine case was considered in $[6,9]$. By reinterpreting the former cyclic projection methods in a suitable Cartesian product space one can obtain iterative simultaneous projection methods [11].

In all existing methods the convergence rate is linear, and they can be presented by the following scheme:

https://daneshyari.com/en/article/6416002

Download Persian Version:

https://daneshyari.com/article/6416002

Daneshyari.com

[^0]: * Corresponding author at: CAMGSD, Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal.

 E-mail address: mstosic@isr.ist.utl.pt (M. Stošić).

