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1. Introduction

For graph theoretic notations, we refer to [2]. All graphs in this paper are undirected
and simple. In this paper, we will give a structure theory for graphs with fixed small-
est eigenvalue. We will use the concept of Hoffman graph (as introduced by Woo and
Neumaier [7]). First, we will introduce a result of Hoffman.

Let ¢ be a positive integer and let Ko, be the graph on 2t + 1 vertices consisting of a
complete graph Ko; and a vertex oo which is adjacent to exactly ¢ vertices of the Ko;. It
is easy to see that the smallest eigenvalue of Ko goes to —oco if ¢ goes to oo. The smallest
eigenvalue of a t-claw K ; equals —/t (where t is a positive integer), and hence it will
go to —oo if t goes to co. So if the smallest eigenvalue of a graph G is at least a fixed
real number A, then there exists a positive integer ¢t = ¢(\) such that G' contains neither
a Ko nor a t-claw K 1,¢ as an induced subgraph. Hoffman [3] showed that the opposite
is also true:

Theorem 1.1. Let G be a graph with smallest eigenvalue Amin(G). Then the following
holds.

(i) For any real number X\ < —1, there exists a positive integer t = t(\) such that
if Amin(G) > A, then G contains neither a f(gt nor a t-claw K as an induced
subgraph.

(ii) For any positive integer t, there exists a non-positive real number A = A(t) such
that if G contains neither a Koy nor a t-claw Ki: as an induced subgraph, then
Amin(G) > A.

In order to prove Theorem 1.1(ii), Hoffman showed that if G contains neither a Ko
nor a t-claw K, : as an induced subgraph, then there exists a highly structured graph
H with the same vertex set as G and with large distinguished cliques that is close to G
(see, for example, [1, Theorem 7.3.1] for a precise description of the graph H). In this
paper, we will give a proof by using the concept of Hoffman graphs.

The main focus of this paper is to obtain a structure theory for graphs with fixed
smallest eigenvalue. Our main theorem is:

Theorem 1.2. Let A < —1 be a real number. Then there exists a positive integer dy such
that if G is a graph with smallest eigenvalue Apmin(G) > X and its minimal valency §(G) >
dy, then for some integer c, there exist induced subgraphs Q1,Q2,...,Q. satisfying the
following conditions:

(i
(ii) For each i, the complement of Q; has maximal valency at most \?;
(iii) Fori # j, the intersection V(Q;) NV (Q;) contains at most —\ — 1 vertices;

The graph G' := (V(G), E(G) \ U;_; E(Q:)) has mazimal valency at most dy.

Each vertex x of G lies in at least one and at most —\ Q;’s;

— — — —

(iv
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