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During the last decade, the paradigm of compressed sens-
ing has gained significant importance in the signal processing 
community. While the original idea was to utilize sparsity as-
sumptions to design powerful recovery algorithms of vectors 
x ∈ Rd, the concept has been extended to cover many other 
types of problems. A noteable example is low-rank matrix re-
covery. Many methods used for recovery rely on solving convex 
programs.
A particularly nice trait of compressed sensing is its geometri-
cal intuition. In recent papers, a classical optimality condition 
has been used together with tools from convex geometry and 
probability theory to prove beautiful results concerning the re-
covery of signals from Gaussian measurements. In this paper, 
we aim to formulate a geometrical condition for stability and 
robustness, i.e. for the recovery of approximately structured 
signals from noisy measurements.
We will investigate the connection between the new condition 
with the notion of restricted singular values, classical stability 
and robustness conditions in compressed sensing, and also to 
important geometrical concepts from complexity theory. We 
will also prove the maybe somewhat surprising fact that for 
many convex programs, exact recovery of a signal x0 imme-
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diately implies some stability and robustness when recovering 
signals close to x0.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Suppose that we are given linear measurements b ∈ R
m of a signal x0 ∈ R

d, i.e. 
b = Ax0 for some matrix A ∈ R

m,d, and are asked to recover the signal from them. If 
d > m, this will not be trivial, since the map x0 �→ b in that case won’t be injective. 
If, however, one assumes that x0 in some sense is sparse, e.g., that many of x0’s entries 
vanish, we can still recover the signal, e.g. with the help of �1-minimization [8]:

min ‖x‖1 subject to Ax = b (P1)

This is the philosophy of compressed sensing, an area of mathematics which has achieved 
major attention over the last decade. It has become a standard technique to choose A
at random, and then to ask the question how large the number of measurements m has 
to be in order for (P1) to be successful with high probability. A popular assumption is 
that A has the Gaussian distribution, i.e., that the entries are i.i.d. standard normally 
distributed.

A widely used criterion to ensure that (P1) is successful is the RIP -property. Put a 
bit informally, a matrix A is said to possess the RIP -property if its RIP -constants;

δk = min
{
δ > 0 : ∀x k-sparse : (1 − δ) ‖x‖2

2 ≤ ‖Ax‖2
2 ≤ (1 + δ) ‖x‖2

2

}
,

are small.
The idea of using convex programs like (P1) to recover structured signals has come 

to be used in a much wider sense than the one above. Some examples of structure 
assumptions that have been considered in the literature are dictionary sparsity [10], block 
sparsity [20], sparsity with prior information [13,16,17], saturated vectors (i.e. vectors 
with |x(i)| = ‖x‖∞ for many i) [14] and low-rank assumptions for matrix completion [7]. 
Although these problems may seem very different at first sight, they can all be solved 
with the help of a convex program of the form

min f(x) subject to Ax = b, (Pf )

where f is some convex function defined on an appropriate space. In all of the mentioned 
examples above, f is chosen to be a norm, but this is not per se necessary.

The connection between the different convex program approaches was thoroughly 
investigated in [9], in which the very general case of f being an atomic norm was in-
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