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Let D be any division ring and p, q positive integers. The 
optimal version of Hua’s fundamental theorem of geometry of 
square matrices has been known in all dimensions but the 2 ×2
case. We solve the remaining case by describing the general 
form of adjacency preserving maps φ : M2(D) → Mp×q(D). 
One of the main tools is a slight modification of known 
non-surjective versions of the fundamental theorem of affine 
geometry.
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1. Introduction and statement of the main result

Let D be a division ring and m, n positive integers. By Mm×n(D) we denote the set 
of all m × n matrices over D. When m = n we write Mn(D) = Mn×n(D).

We consider Dn, the set of all 1 ×n matrices, as a left vector space over D, and tDm, the 
set of all m ×1 matrices, as a right vector space over D. The row space of A ∈ Mm×n(D)
is defined to be the left vector subspace of Dn generated by the rows of A, and the row 
rank of A is defined to be the dimension of this subspace. Correspondingly, the column 
rank of A is the dimension of the column space, that is, the right vector space generated 
by the columns of A. These two ranks are equal for every matrix over D and this common 
value is called the rank of a matrix. It is well-known that if rankA = r, then there exist 
invertible matrices T ∈ Mm(D) and S ∈ Mn(D) such that

TAS =
(
Ir 0
0 0

)
, (1)

where Ir denotes the r× r identity matrix and the zeroes stand for zero matrices of the 
appropriate sizes. The set of matrices Mm×n(D) equipped with the so-called arithmetic 
distance d defined by

d(A,B) = rank(A−B), A,B ∈ Mm×n(D),

is a metric space. Two matrices A and B are adjacent if d(A, B) = 1.
Let V and W be spaces of matrices. Recall that a map φ : V → W preserves adjacency 

in both directions if for every pair A, B ∈ V the matrices φ(A) and φ(B) are adjacent if 
and only if A and B are adjacent. We say that a map φ : V → W preserves adjacency 
(in one direction only) if φ(A) and φ(B) are adjacent whenever A, B ∈ V are adjacent. 
The study of such maps was initiated by Hua in the series of papers [3–10], who proved 
the following fundamental theorem of geometry of rectangular matrices (see [18]): For 
every bijective map φ : Mm×n(D) → Mm×n(D), m, n ≥ 2, preserving adjacency in 
both directions there exist invertible matrices T ∈ Mm(D), S ∈ Mn(D), a matrix R ∈
Mm×n(D), and an automorphism τ of the division ring D such that

φ(A) = TAτS + R, A ∈ Mm×n(D). (2)

Here, Aτ = (aij)τ = (τ(aij)) is a matrix obtained from A by applying τ entrywise. In 
the square case m = n we have the additional possibility

φ(A) = T t
(
Aσ

)
S + R, A ∈ Mn(D), (3)

where T, S, R are matrices in Mn(D) with T, S invertible, σ : D → D is an anti-
automorphism, and tA denotes the transpose of A. Clearly, the converse statement is 
true as well, that is, any map of the form (2) or (3) is bijective and preserves adjacency 
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