

Contents lists available at ScienceDirect

Linear Algebra and its Applications

LINEAR ALGEBRA and Its Applications

www.elsevier.com/locate/laa

The optimal version of Hua's fundamental theorem of geometry of square matrices − the low dimensional case ☆

Wen-ling Huang a,b, Peter Šemrl c,*

- ^a Department of Mathematics, University of Hamburg, Germany
- ^b Department of Mathematics and Computer Sciences, University of Bremen, Germany
- ^c Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

ARTICLE INFO

Article history: Received 21 May 2014 Accepted 20 August 2014 Available online 2 September 2014 Submitted by R. Brualdi

Dedicated to Professor Hans Schneider

MSC: 15A03 51A99

Keywords: Adjacency preserving map Matrix over a division ring Geometry of matrices

ABSTRACT

Let $\mathbb D$ be any division ring and p,q positive integers. The optimal version of Hua's fundamental theorem of geometry of square matrices has been known in all dimensions but the 2×2 case. We solve the remaining case by describing the general form of adjacency preserving maps $\phi: M_2(\mathbb D) \to M_{p\times q}(\mathbb D)$. One of the main tools is a slight modification of known non-surjective versions of the fundamental theorem of affine geometry.

© 2014 Elsevier Inc. All rights reserved.

 $^{^{*}}$ The second author was supported by a grant from ARRS, Slovenia (P1-0288).

^{*} Corresponding author.

E-mail addresses: huang@math.uni-hamburg.de, huang@informatik.uni-bremen.de (W.-l. Huang), peter.semrl@fmf.uni-lj.si (P. Šemrl).

1. Introduction and statement of the main result

Let \mathbb{D} be a division ring and m, n positive integers. By $M_{m \times n}(\mathbb{D})$ we denote the set of all $m \times n$ matrices over \mathbb{D} . When m = n we write $M_n(\mathbb{D}) = M_{n \times n}(\mathbb{D})$.

We consider \mathbb{D}^n , the set of all $1 \times n$ matrices, as a left vector space over \mathbb{D} , and ${}^t\mathbb{D}^m$, the set of all $m \times 1$ matrices, as a right vector space over \mathbb{D} . The row space of $A \in M_{m \times n}(\mathbb{D})$ is defined to be the left vector subspace of \mathbb{D}^n generated by the rows of A, and the row rank of A is defined to be the dimension of this subspace. Correspondingly, the column rank of A is the dimension of the column space, that is, the right vector space generated by the columns of A. These two ranks are equal for every matrix over \mathbb{D} and this common value is called the rank of a matrix. It is well-known that if rank A = r, then there exist invertible matrices $T \in M_m(\mathbb{D})$ and $S \in M_n(\mathbb{D})$ such that

$$TAS = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix},\tag{1}$$

where I_r denotes the $r \times r$ identity matrix and the zeroes stand for zero matrices of the appropriate sizes. The set of matrices $M_{m \times n}(\mathbb{D})$ equipped with the so-called arithmetic distance d defined by

$$d(A, B) = \operatorname{rank}(A - B), \quad A, B \in M_{m \times n}(\mathbb{D}),$$

is a metric space. Two matrices A and B are adjacent if d(A, B) = 1.

Let \mathcal{V} and \mathcal{W} be spaces of matrices. Recall that a map $\phi: \mathcal{V} \to \mathcal{W}$ preserves adjacency in both directions if for every pair $A, B \in \mathcal{V}$ the matrices $\phi(A)$ and $\phi(B)$ are adjacent if and only if A and B are adjacent. We say that a map $\phi: \mathcal{V} \to \mathcal{W}$ preserves adjacency (in one direction only) if $\phi(A)$ and $\phi(B)$ are adjacent whenever $A, B \in \mathcal{V}$ are adjacent. The study of such maps was initiated by Hua in the series of papers [3–10], who proved the following fundamental theorem of geometry of rectangular matrices (see [18]): For every bijective map $\phi: M_{m \times n}(\mathbb{D}) \to M_{m \times n}(\mathbb{D}), m, n \geq 2$, preserving adjacency in both directions there exist invertible matrices $T \in M_m(\mathbb{D}), S \in M_n(\mathbb{D})$, a matrix $R \in$ $M_{m \times n}(\mathbb{D})$, and an automorphism τ of the division ring \mathbb{D} such that

$$\phi(A) = TA^{\tau}S + R, \quad A \in M_{m \times n}(\mathbb{D}). \tag{2}$$

Here, $A^{\tau} = (a_{ij})^{\tau} = (\tau(a_{ij}))$ is a matrix obtained from A by applying τ entrywise. In the square case m = n we have the additional possibility

$$\phi(A) = T^{t}(A^{\sigma})S + R, \quad A \in M_{n}(\mathbb{D}), \tag{3}$$

where T, S, R are matrices in $M_n(\mathbb{D})$ with T, S invertible, $\sigma : \mathbb{D} \to \mathbb{D}$ is an antiautomorphism, and tA denotes the transpose of A. Clearly, the converse statement is true as well, that is, any map of the form (2) or (3) is bijective and preserves adjacency

Download English Version:

https://daneshyari.com/en/article/6416064

Download Persian Version:

https://daneshyari.com/article/6416064

<u>Daneshyari.com</u>