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We use the left vanishing eigenvector to prove various 
well-known conditions for determining the nonsingularity of 
matrices via row sums. This is in contrast to the classical 
approach of using the right vanishing eigenvector. We show 
that on occasion this approach results in simpler proofs and 
generalizations of well-known results. We also present a simple 
proof of a generalized Gudkov’s theorem.
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1. Introduction

The topic of this paper concerns necessary conditions of matrix singularity based on 
row sums. Typically, such results are obtained via the use of a right vanishing column 
eigenvector. In this paper we consider the use of the left row eigenvector to derive such 
conditions. For a matrix A, we use Aij to denote the (i, j)-th entry of A.

Definition 1. A complex matrix A is row diagonally dominant if |Aii| ≥
∑

j �=i |Aij | for 
all i. A complex matrix A is strictly row diagonally dominant if |Aii| >

∑
j �=i |Aij | for 

all i.

2. Lévy–Desplanques theorem of matrix singularity and its generalizations

The well-known Lévy–Desplanques theorem or the equivalent Geršgorin circle crite-
rion [4,6,10] states that strictly row diagonally dominant matrices are nonsingular:

Theorem 1. A complex matrix A is nonsingular if |Aii| >
∑

j �=i |Aij | for all i.

All the proofs that we are aware of proceed by assuming that A is singular with a 
right eigenvector z such that Az = 0 and work from there to reach a contradiction. The 
following proof uses a left eigenvector.

Proof of Theorem 1. We prove this by contradiction. Assume that A is singular and let 
z �= 0 be a left eigenvector such that zTA = 0. Then zjAjj = − 

∑
i�=j ziAij . By the 

triangle inequality, we have

|zj ||Ajj | ≤
∑
i�=j

|zi||Aij | (2.1)

Summing over j, we get

∑
j

|zj ||Ajj | ≤
i�=j∑
i,j

|zj ||Aji| =
∑
j

|zj |
∑
i�=j

|Aji| (2.2)

Since |Ajj | >
∑

i�=j |Aji|, this implies that |zj | = 0 for all j which contradicts the fact 
that z �= 0. �

It should be pointed out that the Camion–Hoffman theorem, which is the converse of 
a (generalized) Lévy–Desplanques theorem, is proved in [3] using the left vanishing row 
eigenvector as well. Taussky [15] proved the following generalization of Theorem 1:

Theorem 2. An irreducible complex matrix A is nonsingular if |Aii| ≥
∑

j �=i |Aij | for all 
i with the inequality strict for at least one i.



Download English Version:

https://daneshyari.com/en/article/6416073

Download Persian Version:

https://daneshyari.com/article/6416073

Daneshyari.com

https://daneshyari.com/en/article/6416073
https://daneshyari.com/article/6416073
https://daneshyari.com

