

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Preservers of unitary similarity functions on Lie products of matrices

LINEAR

lications

Jianlian Cui^a, Chi-Kwong Li^b, Yiu-Tung Poon^{c,*}

^a Department of Mathematics, Tsinghua University, Beijing 100084, PR China
 ^b Department of Mathematics, College of William & Mary, Williamsburg,

VA 23187, USA

^c Department of Mathematics, Iowa State University, Ames, IA 50011, USA

A R T I C L E I N F O

Article history: Received 6 November 2014 Accepted 27 February 2015 Available online 23 March 2015 Submitted by P. Semrl

In memory of Professor Hans Schneider

MSC: 15A60 46B04

Keywords: Lie product Unitary similarity invariant function Pseudo spectrum

ABSTRACT

Denote by M_n the set of $n \times n$ complex matrices. Let $f: M_n \to [0, \infty)$ be a continuous map such that $f(\mu UAU^*) = f(A)$ for any complex unit μ , $A \in M_n$ and unitary $U \in M_n$, f(X) = 0if and only if X = 0 and the induced map $t \mapsto f(tX)$ is monotonically increasing on $[0, \infty)$ for any rank one nilpotent $X \in M_n$. Characterization is given for surjective maps ϕ on M_n satisfying $f(AB - BA) = f(\phi(A)\phi(B) - \phi(B)\phi(A))$. The general theorem is then used to deduce results on special cases when the function is the pseudo spectrum and the pseudo spectral radius.

© 2015 Elsevier Inc. All rights reserved.

* Corresponding author. E-mail addresses: jcui@math.tsinghua.edu.cn (J. Cui), ckli@math.wm.edu (C.-K. Li), ytpoon@iastate.edu (Y.-T. Poon).

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2015.02.036} 0024-3795 @ 2015 Elsevier Inc. All rights reserved.$

1. Introduction

Let M_n be the set of $n \times n$ matrices. A function $f : M_n \to \mathbb{R}$ is a radial unitary similarity invariant function if

(P1) $f(\mu UAU^*) = f(A)$ for a complex unit $\mu, A \in M_n$ and unitary $U \in M_n$.

In [11], the authors studied unitary similarity invariant functions that are norms on M_n , and determined the structure of maps $\phi: M_n \to M_n$ satisfying

$$f(AB - BA) = f(\phi(A)\phi(B) - \phi(B)\phi(A)) \quad \text{for all } A, B \in M_n.$$
(1.1)

In [11, Remark 2.7], it was pointed out that the result actually holds for more general unitary similarity invariant functions. However, no detail was given, and it is not straightforward to apply the results to a specific problem. For instance, it is unclear how one can apply the result to study preservers of pseudo spectrum of Lie product of matrices¹; see the definition in Section 3. To fill this gap, we extend the result in [11] to continuous radial unitary similarity invariant functions $f : M_n \to \mathbb{R}$ satisfying the following properties.

- (P2) For any $X \in M_n$ we have $f(X) = f(0_n)$ if and only if $X = 0_n$, the $n \times n$ zero matrix.
- (P3) For any rank one nilpotent $X \in M_n$, the map $t \mapsto f(tX)$ on $[0,\infty)$ is strictly increasing.

For a function $f: M_n \to [0, \infty)$ satisfying (P1)–(P3), we show that if $\phi: M_n \to M_n$ is a surjective map satisfying (1.1), then there is a unitary $U \in M_n$ and a subset \mathcal{N}_n of normal matrices in M_n such that ϕ has the form

$$\phi(A) = \begin{cases} \mu_A U A^{\dagger} U^* + \nu_A I_n & A \in M_n \setminus \mathcal{N}_n \\ \mu_A U (A^{\dagger})^* U^* + \nu_A I_n & A \in \mathcal{N}_n, \end{cases}$$

where

(a) $\mu_A, \nu_A \in \mathbb{C}$ with $|\mu_A| = 1$, depending on A,

- (b) $A^{\dagger} = A, \overline{A}, A^{t}$ or A^{*} , and
- (c) \mathcal{N}_n depends on the given unitarily invariant function f.

 $^{^{1}}$ This is a question raised by Professor Molnar to the second and third authors at the 2014 Summer Conference of the Canadian Mathematics Society.

Download English Version:

https://daneshyari.com/en/article/6416076

Download Persian Version:

https://daneshyari.com/article/6416076

Daneshyari.com