The enhanced principal rank characteristic sequence for skew-symmetric matrices

Shaun M. Fallat ${ }^{\text {a,*,1 }}$, Dale D. Olesky ${ }^{\text {b,1 }}$, Pauline van den Driessche ${ }^{\text {c,1 }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, University of Regina, Regina, SK, Canada
${ }^{\text {b }}$ Department of Computer Science, University of Victoria, Victoria, BC, V8W 2Y2, Canada
${ }^{\text {c }}$ Department of Mathematics and Statistics, University of Victoria, Victoria, BC, V8W 2Y2, Canada

A R T I C L E I N F O

Article history:

Received 24 June 2015
Accepted 15 August 2015
Available online 29 August 2015
Submitted by R. Brualdi

$M S C$:

15A15
15A03
15B57

Keywords:
Principal rank characteristic sequence
Enhanced principal rank
characteristic sequence
Minor
Rank
Skew-symmetric matrix

Abstract

The enhanced principal rank characteristic sequence (eprsequence) was originally defined for an $n \times n$ real symmetric matrix or an $n \times n$ Hermitian matrix. Such a sequence is defined to be $\ell_{1} \ell_{2} \cdots \ell_{n}$ where ℓ_{k} is A, S, or N depending on whether all, some, or none of the matrix principal minors of order k are nonzero. Here we give a complete characterization of the attainable epr-sequences for real skew-symmetric matrices. With the constraint that $\ell_{k}=0$ if k is odd, we show that nearly all epr-sequences are attainable by skewsymmetric matrices, which is in contrast to the case of real symmetric or Hermitian matrices for which many eprsequences are forbidden.

© 2015 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

For a symmetric matrix over a field F or a complex Hermitian matrix, Brualdi et al. [2] and Barrett et al. [1] defined and studied the principal rank characteristic sequence, which records with a 1 or a 0 whether or not there is a full rank principal submatrix of each order. This concept was extended (or enhanced) in [3] by broadening the measure contained within the elements of a principal rank characteristic sequence. Accordingly this sequence considers the presence or absence of such a principal submatrix, via three possibilities in the following definition.

Definition 1.1. The enhanced principal rank characteristic sequence of a matrix $B \in F^{n \times n}$ is the sequence (epr-sequence) $\operatorname{epr}(B)=\ell_{1} \ell_{2} \cdots \ell_{n}$ where

$$
\ell_{k}= \begin{cases}\mathrm{A} & \text { if all } k \times k \text { principal minors of the given order are nonzero; } \\ \mathrm{S} & \text { if some but not all } k \times k \text { principal minors are nonzero; } \\ \mathrm{N} & \text { if none of the } k \times k \text { principal minors are nonzero, i.e., all are zero. }\end{cases}
$$

We are interested in which epr-sequences are attainable by skew-symmetric matrices over \mathbb{R}, that is, are realized as the epr-sequence of some skew-symmetric matrix.

Brualdi et al. [2] introduced the definition of a pr-sequence for a real symmetric matrix as a simplification of the principal minor assignment problem as stated in [6]. The study of epr-sequences provides additional information that may be helpful in work on the principal minor assignment problem, while remaining somewhat tractable.

For $B \in \mathbb{R}^{n \times n}$ and $\alpha, \beta \subseteq\{1,2, \ldots, n\}$, the submatrix of B lying in rows indexed by α and columns indexed by β is denoted by $B[\alpha, \beta]$. Further, the complementary submatrix obtained from B by deleting the rows indexed by α and columns indexed by β is denoted by $B(\alpha, \beta)$. If $\alpha=\beta$, then the principal submatrix $B[\alpha, \alpha]$ is abbreviated to $B[\alpha]$, while the complementary principal submatrix is denoted by $B(\alpha)$. The complement of α is denoted by α^{c}.

For $B \in \mathbb{R}^{n \times n}$, we let $\sigma(B)$ denote the multiset of eigenvalues of B, and we denote the rank of B by $\operatorname{rank}(B)$. Following the notation in [1], we let $\overline{\ell_{i} \cdots \ell_{j}}$ indicate that the (complete) sequence may be repeated as many times as necessary (or may be omitted entirely). All matrices considered here are skew-symmetric over \mathbb{R} and of order ≥ 2 (since for $n=1$ the only case is $\operatorname{epr}(0)=\mathrm{N})$.

1.1. Basic facts on the epr-sequences of skew-symmetric matrices

This section contains some key fundamental facts on skew-symmetric matrices that we connect to properties of their epr-sequences. The fact that a real matrix satisfies $B=-B^{T}$ places significant restrictions on the spectrum of B, the rank of B, and the quadratic form $x^{T} B x$, for $x \in \mathbb{R}^{n}$. For instance, as is well known, if $B x=\lambda x$ and $x \neq 0$, then $\lambda=i k$ for some $k \in \mathbb{R}$, i.e., λ is pure imaginary. Hence, if $\lambda \in \sigma(B) \cap \mathbb{R}$, then

https://daneshyari.com/en/article/6416098

Download Persian Version:

https://daneshyari.com/article/6416098

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: shaun.fallat@uregina.ca (S.M. Fallat), dolesky@cs.uvic.ca (D.D. Olesky), pvdd@math.uvic.ca (P. van den Driessche).
 ${ }^{1}$ Research supported in part by an NSERC Discovery grants-Fallat: RGPIN-2014-06036, Olesky: Dis. Grant 8214, van den Driessche: Dis. Grant 8965.

