Nonnegative square roots of matrices

Bit-Shun Tam ${ }^{*, 1}$, Peng-Ruei Huang
Department of Mathematics, Tamkang University, New Taipei City, 25137, Taiwan, ROC

A R T I C L E I N F O

Article history:

Received 31 October 2014
Accepted 10 November 2015
Available online 28 November 2015
Submitted by R. Brualdi

MSC:

15B48
05 C 20
05 C 25
05 C 76

Keywords:

Nonnegative matrix
Nonnegative square root
Square root of digraph
Permutation digraph
Bigraph
Monomial matrices
Nilpotent matrix
Rank-one matrix

A B S T R A C T

By the square root of a (square) matrix A we mean a matrix B that satisfies $B^{2}=A$. In this paper, we begin a study of the (entrywise) nonnegative square roots of nonnegative matrices, adopting mainly a graph-theoretic approach. To start with, we settle completely the question of existence and uniqueness of nonnegative square roots for 2 -by- 2 nonnegative matrices. By the square of a digraph H, denoted by H^{2}, we mean the digraph with the same vertex set as H such that (i, j) is an arc if there is a vertex k such that (i, k) and (k, j) are both arcs in H. We call a digraph H a square root of a digraph G if $H^{2}=G$. It is observed that a necessary condition for a nonnegative matrix to have a nonnegative square root is that its digraph has a square root, and also that a digraph G has a square root if and only if there exists a nonnegative matrix A with digraph G such that A has a nonnegative square root. We consider when or whether certain kinds of digraphs (including digraphs that are disjoint union of directed paths and circuits, permutation digraphs or a special kind of bigraphs) have square roots. We also consider when certain kinds of nonnegative matrices (including monomial matrices, rank-one matrices and nilpotent matrices with index two) have nonnegative square roots. A known characterization of loopless digraphs to have square roots, due to F. Escalantge, L. Montejano, and T. Rojano,

[^0]is extended (and amended) to digraphs possibly with loops. Some natural open questions are also posed.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

By a square root of a (square) matrix A we mean a matrix B that satisfies $B^{2}=A$. The study of square roots or p th roots of a general (real or complex) matrix can be traced back to the early works of Cayley [7,8], Sylvester [26], Frobenius [12] in the 19th century, followed by the works of Kreis [19] and Cecioni [9] in the early 20th century. For more recent works on the p th roots or square roots of matrices, refer to the reference list of [14].

Motivated by the use of stochastic matrices in the theory of Markov chain models in finance and healthcare, in [14] by exploiting the theory of functions, Higham and Lin have considered the question of under what conditions a given stochastic matrix has stochastic p th roots. Except for this and some isolated results on doubly stochastic matrices or on M-matrices, and hence on inverse M-matrices (see [21, Theorem 2], [1, Theorem 4]), there is not much literature addressed to (entrywise) nonnegative square roots or p th roots of a nonnegative matrix. In this paper we offer an initial study of the nonnegative square root problem, adopting mainly a graph-theoretic approach.

This paper is organized as follows. In Section 2 after introducing the necessary definitions and notations, we give the known characterizations for a complex (respectively, real) matrix to have a square root (respectively, real square root). We also collect some known necessary conditions for a multi-set to be the spectrum of a nonnegative matrix that have arisen from studies of the Nonnegative Inverse Eigenvalue Problem.

In Section 3 we treat the nonnegative square root problem for the 2 -by- 2 case. It is proved that a 2×2 nonnegative matrix A has a nonnegative square root if and only if all eigenvalues of A are nonnegative and A is not a positive multiple of the 2×2 nilpotent elementary Jordan block $J_{2}(0)$ or its transpose. We also show that the result no longer holds for nonnegative matrices of higher order.

In Section 4 we connect the study of nonnegative square roots of a nonnegative matrix with the study of square roots of a digraph. It is found that a necessary condition for a nonnegative (respectively, symmetric nonnegative) matrix to have a nonnegative (respectively, symmetric nonnegative) square root is that its digraph has a square root (respectively, symmetric square root), and also a digraph (or symmetric digraph) G has a square root (or symmetric square root) if and only if there exists a nonnegative (respectively, symmetric nonnegative) matrix A with G as its digraph such that A has a nonnegative (respectively, symmetric nonnegative) square root.

In Section 5 we provide an example which shows that even if a nonnegative matrix is completely positive and satisfies the graph-theoretic and spectral necessary conditions for having a nonnegative square root, it need not have a nonnegative square root.

https://daneshyari.com/en/article/6416108

Download Persian Version:
https://daneshyari.com/article/6416108

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: bsm01@mail.tku.edu.tw (B.-S. Tam), 143422@mail.tku.edu.tw (P.-R. Huang).
 ${ }^{1}$ Partially supported by Ministry of Science and Technology of the Republic of China under grant No. MOST 103-2115-M-032-005-MY2.

