Null ideals of matrices over residue class rings of principal ideal domains

Roswitha Rissner
Institute of Analysis and Number Theory, Graz University of Technology, Steyrergasse 30, 8045 Graz, Austria

A R T I C L E I N F O

Article history:

Received 6 June 2015
Accepted 5 January 2016
Available online 13 January 2016
Submitted by R. Brualdi

MSC:

11C08
11 C 20
13F20
15A15
15B33
15B36

Keywords:
Null ideal
Matrix
Minimal polynomial
Integer-valued polynomials

Abstract

Given a square matrix A with entries in a commutative ring S, the ideal of $S[X]$ consisting of polynomials f with $f(A)=0$ is called the null ideal of A. Very little is known about null ideals of matrices over general commutative rings. First, we determine a certain generating set of the null ideal of a matrix in case $S=D / d D$ is the residue class ring of a principal ideal domain D modulo $d \in D$. After that we discuss two applications. We compute a decomposition of the S-module $S[A]$ into cyclic S-modules and explain the strong relationship between this decomposition and the determined generating set of the null ideal of A. And finally, we give a rather explicit description of the ring $\operatorname{Int}\left(A, \mathrm{M}_{n}(D)\right)$ of all integer-valued polynomials on A.

© 2016 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Matrices with entries in commutative rings arise in numerous contexts, both in pure and applied mathematics. However, many of the well-known results of classical linear algebra do not hold in this general setting. This is the case even if the underlying ring is

[^0]a domain (but not a field). For a general introduction to matrix theory over commutative rings we refer to the textbook of Brown [4].

The purpose of this paper is to provide a better understanding of null ideals of square matrices over residue class rings of principal ideal domains.

Definition 1.1. Let S be a commutative ring, $A \in \mathrm{M}_{n}(S)$ an $n \times n$-square matrix A over S. The null ideal $\mathrm{N}^{S}(A)$ of A (over S) is the set of all polynomials which annihilate A, that is,

$$
\mathrm{N}^{S}(A)=\{f \in S[X] \mid f(A)=0\}
$$

We often write $\mathrm{N}(A)$ instead of $\mathrm{N}^{S}(A)$ if the underlying ring is clear from the context.
In case S is a field, it is well-known that the null ideal of A is generated by a uniquely determined monic polynomial, the so-called minimal polynomial μ_{A} of A. Further, it is known that if S is a domain, then the null ideal of every square matrix is principal (generated by μ_{A}) if and only if S is integrally closed (Brown [5], Frisch [9]). However, little is known about the null ideal of a matrix with entries in a commutative ring. The well-known Cayley-Hamilton Theorem states that every square matrix over a commutative ring satisfies its own characteristic equation (cf. [12, Theorem XIV.3.1]). Therefore there always exists a monic polynomial in $S[X]$ of minimal degree which annihilates the matrix.

Definition 1.2. Let $A \in \mathrm{M}_{n}(S)$ be a square matrix over a commutative ring S. If $f \in S[X]$ is a monic polynomial with $f(A)=0$ and there exists no monic polynomial in $S[X]$ of smaller degree with this property, then we call f a minimal polynomial of A over S.

Note that, in case S is a field, the definition above is consistent with the classical definition of the (uniquely determined) minimal polynomial of a square matrix. However in general, if S is not a field, a minimal polynomial of a matrix over S is not uniquely determined, although its degree is. It is known that if S is a domain, then the null ideal of A is principal if and only if A has a uniquely determined minimal polynomial over S, which is in turn equivalent to the (uniquely determined) minimal polynomial μ_{A} of A over the quotient field of S being in $S[X]$.

Brown discusses conditions for the null ideal to be principal over a general commutative ring R (with identity). In [7], he gives sufficient conditions on certain $R[X]$-submodules of the null ideal for the null ideal to be principal. There is also earlier work of Brown $([5,6])$ investigating the relationship of the null ideals of certain pairs of square matrices over a commutative ring (which he refers to as spanning rank partners).

A better understanding of null ideals of matrices over residue class rings of domains has applications in the theory of integer-valued polynomials on matrix rings. Let D be a domain with quotient field K, and let $A \in \mathrm{M}_{n}(D)$. For a polynomial $f \in K[X]$, the image $f(A)$ of A under f is a matrix with entries in K. There are two immediate questions in

https://daneshyari.com/en/article/6416130

Download Persian Version:
https://daneshyari.com/article/6416130

Daneshyari.com

[^0]: E-mail address: rissner@math.tugraz.at.
 http://dx.doi.org/10.1016/j.laa.2016.01.004
 0024-3795/®2016 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

