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is called the null ideal of A. Very little is known about null
ideals of matrices over general commutative rings. First, we
determine a certain generating set of the null ideal of a matrix

MSC: in case S = D/dp is the residue class ring of a principal
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11C20 applications. We compute a decomposition of the S-module
13F20 S[A] into cyclic S-modules and explain the strong relationship
15A15 between this decomposition and the determined generating set
}gggg of the null ideal of A. And finally, we give a rather explicit

description of the ring Int(A, M, (D)) of all integer-valued
X J polynomials on A.
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1. Introduction

Matrices with entries in commutative rings arise in numerous contexts, both in pure
and applied mathematics. However, many of the well-known results of classical linear
algebra do not hold in this general setting. This is the case even if the underlying ring is
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a domain (but not a field). For a general introduction to matrix theory over commutative
rings we refer to the textbook of Brown [4].

The purpose of this paper is to provide a better understanding of null ideals of square
matrices over residue class rings of principal ideal domains.

Definition 1.1. Let S be a commutative ring, A € M,,(S) an n X n-square matrix A over S.
The null ideal NS(A) of A (over S) is the set of all polynomials which annihilate A, that
is,

N*(4) = { f € S[X] | f(A4) =0}
We often write N(A) instead of N¥(A) if the underlying ring is clear from the context.

In case S is a field, it is well-known that the null ideal of A is generated by a uniquely
determined monic polynomial, the so-called minimal polynomial pa of A. Further, it
is known that if S is a domain, then the null ideal of every square matrix is principal
(generated by p4) if and only if S is integrally closed (Brown [5], Frisch [9]). However,
little is known about the null ideal of a matrix with entries in a commutative ring. The
well-known Cayley-Hamilton Theorem states that every square matrix over a commuta-
tive ring satisfies its own characteristic equation (cf. [12, Theorem XIV.3.1]). Therefore
there always exists a monic polynomial in S[X] of minimal degree which annihilates the
matrix.

Definition 1.2. Let A € M,,(S) be a square matrix over a commutative ring S. If f € S[X]
is a monic polynomial with f(A4) = 0 and there exists no monic polynomial in S[X] of
smaller degree with this property, then we call f a minimal polynomial of A over S.

Note that, in case S is a field, the definition above is consistent with the classical
definition of the (uniquely determined) minimal polynomial of a square matrix. However
in general, if S is not a field, a minimal polynomial of a matrix over S is not uniquely
determined, although its degree is. It is known that if S is a domain, then the null ideal
of A is principal if and only if A has a uniquely determined minimal polynomial over S,
which is in turn equivalent to the (uniquely determined) minimal polynomial 4 of A
over the quotient field of S being in S[X].

Brown discusses conditions for the null ideal to be principal over a general com-
mutative ring R (with identity). In [7], he gives sufficient conditions on certain
R[X]-submodules of the null ideal for the null ideal to be principal. There is also earlier
work of Brown ([5,6]) investigating the relationship of the null ideals of certain pairs of
square matrices over a commutative ring (which he refers to as spanning rank partners).

A better understanding of null ideals of matrices over residue class rings of domains
has applications in the theory of integer-valued polynomials on matrix rings. Let D be a
domain with quotient field K, and let A € M,,(D). For a polynomial f € K[X], the image
f(A) of A under f is a matrix with entries in K. There are two immediate questions in
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