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The note describes the cones in the Euclidean space admitting 
isotonic metric projection with respect to the coordinate-
wise ordering. As a consequence it is shown that the metric 
projection onto the isotonic regression cone (the cone defined 
by the general isotonic regression problem) admits a projection 
which is isotonic with respect to the coordinate-wise ordering.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The isotonic regression problem [1,2,6,7,11,13,16] and its solution is intimately related 
to the metric projection into a cone of the Euclidean vector space. In fact the isotonic 
regression problem is a special quadratic optimization problem. It is desirable to relate 
the metric projection onto a closed convex set to some order theoretic properties of the 
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projection itself, which can facilitate the solution of some problems. When the underlying 
set is a convex cone, then the most natural is to consider the order relation defined by the 
cone itself. This approach gives rise to the notion of the isotonic projection cone, which 
by definition is a cone with the metric projection onto it isotonic with respect to the 
order relation endowed by the cone itself. As we shall see, the two notions of isotonicity, 
the first related to the regression problem and the second to the metric projection, are 
at the first sight rather different. The fact that the two notions are in fact intimately 
related (this relation constitutes the subject of this note) is somewhat accidental and it 
derives from semantical reasons.

The relation of the two notions is observed and taken advantage in the paper [3]. 
There was exploited the fact that the totally ordered isotonic regression cone is an 
isotonic projection cone too.

The problem occurs as a particular case of the following more general question: What 
does a closed convex set in the Euclidean space which admits a metric projection isotonic 
with respect to some vectorial ordering on the space look like?

It turns out that the problem is strongly related to some lattice-like operations defined 
on the space, and in particular to the Euclidean vector lattice theory. (See [8].) When 
the ordering is the coordinate-wise one, the problem goes back in the literature to [4,9,
10,14,15]. However, we shall ignore these connections in order to simplify the exposition. 
Thus, the present note, besides proving some new results, has the role to bring together 
some previous results and to present them in a simple unified form.

2. Preliminaries

Denote by Rm the m-dimensional Euclidean space endowed with the scalar product 
〈·, ·〉 : R

m × R
m → R, and the Euclidean norm ‖.‖ and topology this scalar product 

defines.
Throughout this note we shall use some standard terms and results from convex 

geometry (see e.g. [12]).
Let K be a convex cone in Rm, i.e., a nonempty set with (i) K + K ⊂ K and (ii) 

tK ⊂ K, ∀ t ∈ R+ = [0, +∞). The convex cone K is called pointed, if K ∩ (−K) = {0}. 
The cone K is generating if K −K = R

m. K is generating if and only if intK �= ∅.
A closed, pointed generating convex cone is called proper.
For any x, y ∈ R

m, by the equivalence x ≤K y ⇔ y − x ∈ K, the convex cone K
induces an order relation ≤K in Rm, that is, a binary relation, which is reflexive and 
transitive. This order relation is translation invariant in the sense that x ≤K y implies 
x + z ≤K y + z for all z ∈ R

m, and scale invariant in the sense that x ≤K y implies 
tx ≤K ty for any t ∈ R+. Conversely, if � is a translation invariant and scale invariant 
order relation on Rm, then � = ≤K with K = {x ∈ R

m : 0 � x} a convex cone. If K is 
pointed, then ≤K is antisymmetric too, that is x ≤K y and y ≤K x imply that x = y. 
Conversely, if the translation invariant and scale invariant order relation � on Rm is also 
antisymmetric, then the convex cone K = {x ∈ R

m : 0 � x} is also pointed. (In fact it 
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