Extremal graphs with bounded vertex bipartiteness number

María Robbiano *, Katherine Tapia Morales, Bernardo San
Martín
Departamento de Matemáticas, Universidad Católica del Norte, Antofagasta, Chile

A R T I C L E I N F O

Article history:

Received 12 June 2015
Accepted 15 November 2015
Available online 17 December 2015
Submitted by R. Brualdi

MSC:

05C50
15A45

Keywords:
Adjacency matrix
Signless Laplacian matrix
Maximal eigenvalue
Vertex bipartiteness
Spread of a graph

A B S T R A C T

Given a graph G. The fewest number of vertices whose deletion yields a bipartite graph from G was defined by S. Fallat and Yi-Zheng Fan to be the vertex bipartiteness of G and it is denoted by $v_{b}(G)$. We consider the set $\Sigma_{k}(n)$ defined by

$$
\begin{gathered}
\{G=(V(G), E(G)): G \text { connected } \\
\left.\qquad V(G) \mid=n \text { and } v_{b}(G) \leq k\right\}
\end{gathered}
$$

In this work we identify the graph in $\Sigma_{k}(n)$ with maximum spectral radius and maximum signless Laplacian spectral radius.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let $G=(V(G), E(G))$ be an undirected simple graph with n vertices and m edges. Usually, we consider that the graph G has order n, that is $V(G)=\{1, \ldots, n\}$. The set

[^0]$E(G)$ is the set of edges of G. An edge with end vertices i and j is denoted by $i j$ and we say that the vertices i and j are adjacent or neighbors. The multiset of the eigenvalues of an arbitrary square matrix, M is the spectrum of M and will be denoted by σ_{M}. More generally, $\sigma_{M}=\left\{\tau_{1}^{\left[m_{1}\right]}, \tau_{2}^{\left[m_{2}\right]}, \ldots, \tau_{q}^{\left[m_{q}\right]}\right\}$ denotes that τ_{1} has multiplicity m_{1}, τ_{2} has multiplicity m_{2}, and so on. If M is a symmetric matrix of order n its eigenvalues are ordered as follows: $\tau_{1} \geq \cdots \geq \tau_{n}$. The spectral radius of M is
$$
\rho_{M}=\max \left\{|\tau|: \tau \in \sigma_{M}\right\} .
$$

The eigenvalues of $G, \lambda_{1}(G) \geq \cdots \geq \lambda_{n}(G)$ are the eigenvalues of its adjacency matrix, A_{G}. The spectrum of G, is $\sigma_{A_{G}}$, which we abbreviate as σ_{G}. If G has at least one edge, then A_{G} has a negative eigenvalue, not greater than -1 and a positive eigenvalue not less than the average degree of the vertices of G (see [2,10]). The number of neighbors of a vertex i is the degree of i and the neighborhood of $i, N_{G}(i)$ is the set of its neighbors. The maximum and minimum degree of the vertices of G are $\Delta(G)$ (or Δ) and $\delta(G)$ (or δ). A graph G is called p-regular whenever $\Delta=\delta=p$. A subgraph H of G is an induced subgraph if two vertices of $V(H)$ are adjacent in H if and only if they are adjacent in G. Thus, an induced subgraph is determined by its vertex set. Indeed, by deleting some vertices of G together with the edges incident to those vertices we obtain an induced subgraph. The induced subgraph with vertex set $S \subset V(G)$ is denoted by $\langle S\rangle$. A bipartite graph is a graph G whose vertex set can be divided into two disjoint set X, Y such that every edge has an end vertex in X and the other one in Y. The set $\{X, Y\}$ is called a bipartition of G. It is well known that if G is a bipartite graph then $\lambda_{n}(G)=-\lambda_{1}(G)$. A complete bipartite graph $K_{s, t}$ is a bipartite graph with a bipartition $\{X, Y\}$, where $|X|=s$ and $|Y|=t$ and such that any two vertices $i \in X$ and $j \in Y$ are connected by an edge. The complete graph K_{n} is a graph on n vertices such that any two distinct vertices are connected by an edge. Let G_{1} and G_{2} be two vertex-disjoint graphs. The join of G_{1} and G_{2} is the graph $G_{1} \vee G_{2}$ such that $V\left(G_{1} \vee G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \vee G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{i j: i \in V\left(G_{1}\right)\right.$ and $\left.j \in V\left(G_{2}\right)\right\}$.

Let D_{G} be the diagonal matrix of vertex degrees. It is a consequence of the Geršgorin Theorem (see [14]) that the matrices $L_{G}=D_{G}-A_{G}$ and $Q_{G}=D_{G}+A_{G}$ are positive semidefinite. We refer to these matrices as the Laplacian and the signless Laplacian matrix of G, respectively and their spectrum are the Laplacian and signless Laplacian spectrum of G, respectively. The spectrum of Q_{G} equals that of L_{G} if and only if G is a bipartite graph (see $[3,4,8,9]$). The minimum number of vertices (resp., edges) whose deletion yields a bipartite graph from G is called the vertex bipartiteness (resp., edge bipartiteness) of G and it is denoted $v_{b}(G)$ (resp., $\epsilon_{b}(G)$), see [6]. Let s_{n} be the smallest eigenvalue of Q_{G}, S. Fallat and Yi-Zheng Fan in [6] established the inequality:

$$
\begin{equation*}
s_{n} \leq v_{b}(G) \leq \epsilon_{b}(G) \tag{1}
\end{equation*}
$$

There are numerous results about the largest eigenvalue of L_{G}, the spectral radius, namely see $[1,5,11,12]$ for upper and lower bounds. In the present paper we obtain an

https://daneshyari.com/en/article/6416154

Download Persian Version:

https://daneshyari.com/article/6416154

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: mrobbiano@ucn.cl (M. Robbiano), ktapia@ucn.cl (K. Tapia Morales), sanmarti@ucn.cl (B. San Martín).

