Linear Algebra and its Applications 493 (2016) 37–44

The distance signatures of the incidence graphs of affine resolvable designs

Jianmin Ma

College of Math & Information Science and Hebei Key Lab of Computational Mathematics & Applications, Hebei Normal University, Shijiazhuang, Hebei 050016, China

ARTICLE INFO

Article history: Received 21 May 2015 Accepted 1 December 2015 Available online 17 December 2015 Submitted by R. Brualdi

MSC: 05C50 15A18

Keywords: Distance-matrix Signature Affine divisible design

ABSTRACT

In this note, we determined the distance signatures of the incidence matrices of affine resolvable designs. This proves a conjecture by Kohei Yamada.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let A be a $d \times d$ symmetric matrix over the real field \mathbb{R} . Let $n_+(A)$, $n_-(A)$, and $n_0(A)$ be the number (counting multiplicity for repeated values) of positive, negative and zero eigenvalues of A, respectively. So $d = n_+(A) + n_-(A) + n_0(A)$. The signature (inertia) of A is the triple $(n_+(A), n_-(A), n_0(A))$, denoted by sig(A).

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2015.12.003} 0024-3795 \end{tabular} 0215$ Elsevier Inc. All rights reserved.

E-mail address: jianminma@yahoo.com.

For any graph G, we use the same the letter G to denote its vertex set. The distance $\partial(x, y)$ of vertices $x, y \in G$ is the length of a shortest path between them. The distance matrix D = D(G) is formed by indexing the rows and columns with the vertex set G and defining the (x, y) entry to be $\partial(x, y)$. Following [5], the signature $\operatorname{sig}(D)$ is called the *distance signature* of graph G. We also write $\operatorname{sig}(G)$ for $\operatorname{sig}(D)$ and $n_{\pm,0}(D)$ for $n_{\pm,0}(G)$. Since D is real and symmetric, it has real eigenvalues. Because the trace of D(G) is zero, $n_+(G)$ and $n_-(G)$ are bounded above by |G| - 1.

In [5], Graham and Lovász remarked that if it was not even known which of graphs G has $n_{-}(G) = |G| - 1$ or whether there is a graph for which $n_{+}(G) > n_{-}(G)$. Azarija [2] showed that the family of conference graphs has $n_{+}(G) > n_{-}(G)$. If G is a conference graph on v vertices, $v \equiv 1 \pmod{4}$, then D(G) has a signature $(\frac{v+1}{2}, \frac{v-1}{2}, 0)$. So for $v \geq 9, n_{+}(G) > n_{-}(G)$.

In this note, we determine the distance signature for the incidence graph of an affine design.

Theorem 1. Let \mathscr{D} be an affine (v, k, λ) -design with v points and b blocks, where $v = n^2 \mu$, $b = (n^3 \mu - 1)/(n - 1)$ for integers $n \ge 2$, $\mu \ge 1$. If G is the incidence graph of \mathscr{D} , then the distance signature of G is

$$\operatorname{sig}(G) = \begin{cases} (1,4,5) & \text{if } (n,\mu) = (2,1) \\ (4\mu,4\mu-1,4\mu-2) & \text{if } n = 2, \mu \ge 2 \\ (b,v,0) & \text{otherwise.} \end{cases}$$

Recently, Zhang [6] determined the distance signatures of complete k-partite graphs, and Zhang and Godsil [7] gave some graphs with $n_+(G) = 1$ and obtained their distance signatures. See the recent survey paper [1] for more background and activities about the spectra of distance matrices.

2. Preliminaries

A design \mathscr{D} is a pair (V, \mathcal{B}) , where V is a finite set and \mathcal{B} is a set of subsets of V. Elements of V and \mathcal{B} are called points and blocks, respectively. \mathscr{D} is called a (v, k, λ) design if (1) |V| = v, (2) every block contains k points, and (3) every 2-subset of V is contained in precisely λ blocks. For a (v, k, λ) design, it can be shown that the number of blocks containing any fixed point is $\lambda(v-1)/(k-1)$, denoted by r. The number of blocks b is vr/k. People sometimes refer \mathscr{D} to as (v, b, r, k, λ) design.

A parallel class in \mathscr{D} is a set of blocks that form a partition of V. \mathscr{D} is called a *resolvable* design if \mathcal{B} admits a partition of parallel classes:

$$\mathcal{B} = \mathcal{C}_1 \cup \mathcal{C}_2 \cup \cdots \cup \mathcal{C}_r.$$

Blocks from the same parallel class are said to be parallel. A resolvable (v, k, λ) design \mathscr{D} is called *affine* if any two distinct non-parallel blocks intersect at exactly μ points.

Download English Version:

https://daneshyari.com/en/article/6416155

Download Persian Version:

https://daneshyari.com/article/6416155

Daneshyari.com