The distance signatures of the incidence graphs of affine resolvable designs

Jianmin Ma
College of Math \mathcal{E} Information Science and Hebei Key Lab of Computational Mathematics \& Applications, Hebei Normal University, Shijiazhuang, Hebei 050016, China

A R T I C L E I N F O

Article history:

Received 21 May 2015
Accepted 1 December 2015
Available online 17 December 2015
Submitted by R. Brualdi
MSC:
05C50
15A18

Keywords:
Distance-matrix
Signature
Affine divisible design

A B S T R A C T

In this note, we determined the distance signatures of the incidence matrices of affine resolvable designs. This proves a conjecture by Kohei Yamada.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let A be a $d \times d$ symmetric matrix over the real field \mathbb{R}. Let $n_{+}(A), n_{-}(A)$, and $n_{0}(A)$ be the number (counting multiplicity for repeated values) of positive, negative and zero eigenvalues of A, respectively. So $d=n_{+}(A)+n_{-}(A)+n_{0}(A)$. The signature (inertia) of A is the triple $\left(n_{+}(A), n_{-}(A), n_{0}(A)\right)$, denoted by $\operatorname{sig}(A)$.

[^0]For any graph G, we use the same the letter G to denote its vertex set. The distance $\partial(x, y)$ of vertices $x, y \in G$ is the length of a shortest path between them. The distance matrix $D=D(G)$ is formed by indexing the rows and columns with the vertex set G and defining the (x, y) entry to be $\partial(x, y)$. Following [5], the signature $\operatorname{sig}(D)$ is called the distance signature of graph G. We also write $\operatorname{sig}(G)$ for $\operatorname{sig}(D)$ and $n_{ \pm, 0}(D)$ for $n_{ \pm, 0}(G)$. Since D is real and symmetric, it has real eigenvalues. Because the trace of $D(G)$ is zero, $n_{+}(G)$ and $n_{-}(G)$ are bounded above by $|G|-1$.

In [5], Graham and Lovász remarked that if it was not even known which of graphs G has $n_{-}(G)=|G|-1$ or whether there is a graph for which $n_{+}(G)>n_{-}(G)$. Azarija [2] showed that the family of conference graphs has $n_{+}(G)>n_{-}(G)$. If G is a conference graph on v vertices, $v \equiv 1(\bmod 4)$, then $D(G)$ has a signature $\left(\frac{v+1}{2}, \frac{v-1}{2}, 0\right)$. So for $v \geq 9, n_{+}(G)>n_{-}(G)$.

In this note, we determine the distance signature for the incidence graph of an affine design.

Theorem 1. Let \mathscr{D} be an affine (v, k, λ)-design with v points and b blocks, where $v=n^{2} \mu$, $b=\left(n^{3} \mu-1\right) /(n-1)$ for integers $n \geq 2, \mu \geq 1$. If G is the incidence graph of \mathscr{D}, then the distance signature of G is

$$
\operatorname{sig}(G)= \begin{cases}(1,4,5) & \text { if }(n, \mu)=(2,1) \\ (4 \mu, 4 \mu-1,4 \mu-2) & \text { if } n=2, \mu \geq 2 \\ (b, v, 0) & \text { otherwise }\end{cases}
$$

Recently, Zhang [6] determined the distance signatures of complete k-partite graphs, and Zhang and Godsil [7] gave some graphs with $n_{+}(G)=1$ and obtained their distance signatures. See the recent survey paper [1] for more background and activities about the spectra of distance matrices.

2. Preliminaries

A design \mathscr{D} is a pair (V, \mathcal{B}), where V is a finite set and \mathcal{B} is a set of subsets of V. Elements of V and \mathcal{B} are called points and blocks, respectively. \mathscr{D} is called a (v, k, λ) design if (1) $|V|=v,(2)$ every block contains k points, and (3) every 2-subset of V is contained in precisely λ blocks. For a (v, k, λ) design, it can be shown that the number of blocks containing any fixed point is $\lambda(v-1) /(k-1)$, denoted by r. The number of blocks b is $v r / k$. People sometimes refer \mathscr{D} to as (v, b, r, k, λ) design.

A parallel class in \mathscr{D} is a set of blocks that form a partition of $V . \mathscr{D}$ is called a resolvable design if \mathcal{B} admits a partition of parallel classes:

$$
\mathcal{B}=\mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \cdots \cup \mathcal{C}_{r}
$$

Blocks from the same parallel class are said to be parallel. A resolvable (v, k, λ) design \mathscr{D} is called affine if any two distinct non-parallel blocks intersect at exactly μ points.

https://daneshyari.com/en/article/6416155

Download Persian Version:

https://daneshyari.com/article/6416155

Daneshyari.com

[^0]: E-mail address: jianminma@yahoo.com.

