Spectral conditions for edge connectivity and packing spanning trees in multigraphs

Xiaofeng Gu
Department of Mathematics, University of West Georgia, Carrollton, GA 30118, USA

A R T I C L E I N F O

Article history

Received 28 January 2015
Accepted 30 November 2015
Available online 17 December 2015
Submitted by R. Brualdi

MSC:

05C50
05 C 05
05C40

Keywords:
Eigenvalue
Algebraic connectivity
Edge connectivity
Spanning tree
Balloon

Abstract

A multigraph is a graph with possible multiple edges, but no loops. The multiplicity of a multigraph is the maximum number of edges between any pair of vertices. We prove that, for a multigraph G with multiplicity m and minimum degree $\delta \geq 2 k$, if the algebraic connectivity is greater than $\min \left\{\frac{2 k-1}{\lceil(\delta+1) / m\rceil}, \frac{2 k-1}{2}\right\}$, then G has at least k edge-disjoint spanning trees; for a multigraph G with multiplicity m and minimum degree $\delta \geq k$, if the algebraic connectivity is greater than $\min \left\{\frac{2(k-1)}{\Gamma(\delta+1) / m\rceil}, k-1\right\}$, then the edge connectivity is at least k. These extend some earlier results. A balloon of a graph G is a maximal 2-edge-connected subgraph that is joined to the rest of G by exactly one cut-edge. We provide spectral conditions for the number of balloons in a multigraph, which also generalizes an earlier result.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A multigraph is a graph with possible multiple edges, but no loops. The multiplicity of a multigraph is the maximum number of edges between any pair of vertices. In

[^0]this paper, we consider finite undirected multigraphs. Thus, "a graph" in this paper means "a multigraph", unless otherwise stated. We follow the notations of Bondy and Murty [1] for undefined terms. If $X_{1}, X_{2}, \cdots, X_{t}$ are disjoint vertex subsets of G, then $e\left(X_{1}, X_{2}, \cdots, X_{t}\right)$ denotes the number of edges with two endpoints in distinct X_{i} 's, for $i=1,2 \cdots, t$. In the following, we assume k and d are positive integers.

Let G be an undirected graph with vertex set $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. The adjacency matrix of G is an n by n matrix $A(G)$ with entry $a_{i j}$ being the number of edges between v_{i} and v_{j} for $1 \leq i, j \leq n$. We use $\lambda_{i}(G)$ to denote the i th largest eigenvalue of $A(G)$; when the graph G is understood from the context, we use λ_{i} for $\lambda_{i}(G)$. With these notations, we always have $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Let $D(G)$ be the degree matrix of G, that is, the n by n diagonal matrix with entry $a_{i i}$ being the degree of vertex v_{i} in G for $1 \leq i \leq n$. The matrices $L(G)=D(G)-A(G)$ and $Q(G)=D(G)+A(G)$ are the Laplacian matrix and the signless Laplacian matrix of G, respectively. We use $\mu_{i}(G)$ and $q_{i}(G)$ to denote the i th largest eigenvalue of $L(G)$ and $Q(G)$, respectively. It is not difficult to see that $\mu_{n}(G)=0$. The second smallest eigenvalue of $L(G), \mu_{n-1}(G)$, is known as the algebraic connectivity of G.

For a graph G, the spanning tree packing number, denoted by $\tau(G)$, is the maximum number of edge-disjoint spanning trees in G. A fundamental theorem characterizing graphs G with $\tau(G) \geq k$ has been obtained by Nash-Williams and Tutte.

Theorem 1.1. (Nash-Williams [11] and Tutte [15]) Let G be a connected graph. Then $\tau(G) \geq k$ if and only if for any partition $\left(V_{1}, \ldots, V_{t}\right)$ of $V(G), e\left(V_{1}, \ldots, V_{t}\right) \geq k(t-1)$.

Cioabă and Wong [4] investigated the relationship between the second largest adjacency eigenvalue and $\tau(G)$ for a regular simple graph G, and made Conjecture 1.1. Utilizing Theorem 1.1, Cioabă and Wong proved the conjecture for $k \in\{2,3\}$.

Conjecture 1.1. (Cioabă and Wong [4]) Let k and d be two integers with $d \geq 2 k \geq 4$. If G is a d-regular simple graph with $\lambda_{2}(G)<d-\frac{2 k-1}{d+1}$, then $\tau(G) \geq k$.

Conjecture 1.1 was then extended to Conjecture 1.2 for any simple graph G (not necessarily regular). See $[5,6,8,9]$ for the conjecture and some partial results.

Conjecture 1.2. (Gu [5], Gu, Lai, Li and Yao [6], Li and Shi [8], Liu, Hong and Lai [9]) Let k be an integer with $k \geq 2$ and G be a simple graph with minimum degree $\delta \geq 2 k$. If $\lambda_{2}(G)<\delta-\frac{2 k-1}{\delta+1}$, then $\tau(G) \geq k$.

Recently, both Conjectures 1.1 and 1.2 were settled in [10].
Theorem 1.2. (Liu, Hong, Gu and Lai [10]) Let G be a simple graph with $\delta \geq 2 k$.
(i) If $\mu_{n-1}(G)>\frac{2 k-1}{\delta+1}$, then $\tau(G) \geq k$.
(ii) If $\lambda_{2}(G)<\delta-\frac{2 k-1}{\delta+1}$, then $\tau(G) \geq k$.
(iii) If $q_{2}(G)<2 \delta-\frac{2 k-1}{\delta+1}$, then $\tau(G) \geq k$.

https://daneshyari.com/en/article/6416157

Download Persian Version:

https://daneshyari.com/article/6416157

Daneshyari.com

[^0]: E-mail address: xgu@westga.edu.

