

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Concentration of the mixed discriminant of well-conditioned matrices

LINEAR

lications

Alexander Barvinok

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA

ARTICLE INFO

Article history: Received 31 August 2015 Accepted 17 November 2015 Available online 17 December 2015 Submitted by R. Brualdi

MSC: 15A15 15A45 90C25 68Q25

Keywords: Mixed discriminant Scaling Algorithm Concentration

ABSTRACT

We call an *n*-tuple Q_1, \ldots, Q_n of positive definite $n \times n$ real matrices α -conditioned for some $\alpha \geq 1$ if for the corresponding quadratic forms $q_i : \mathbb{R}^n \longrightarrow \mathbb{R}$ we have $q_i(x) \leq \alpha q_i(y)$ for any two vectors $x, y \in \mathbb{R}^n$ of Euclidean unit length and $q_i(x) \leq \alpha q_j(x)$ for all $1 \leq i, j \leq n$ and all $x \in \mathbb{R}^n$. An *n*-tuple is called doubly stochastic if the sum of Q_i is the identity matrix and the trace of each Q_i is 1. We prove that for any fixed $\alpha \geq 1$ the mixed discriminant of an α -conditioned doubly stochastic *n*-tuple is $n^{O(1)}e^{-n}$. As a corollary, for any $\alpha \geq 1$ fixed in advance, we obtain a polynomial time algorithm approximating the mixed discriminant of an α -conditioned *n*-tuple within a polynomial in *n* factor.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and main results

1.1. Mixed discriminants

Let Q_1, \ldots, Q_n be $n \times n$ real symmetric matrices.

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2015.11.040} 0024-3795 @ 2015 Elsevier Inc. All rights reserved.$

E-mail address: barvinok@umich.edu.

The function det $(t_1Q_1 + \ldots + t_nQ_n)$, where t_1, \ldots, t_n are real variables, is a homogeneous polynomial of degree n in t_1, \ldots, t_n and its coefficient

$$D(Q_1, \dots, Q_n) = \frac{\partial^n}{\partial t_1 \cdots \partial t_n} \det \left(t_1 Q_1 + \dots + t_n Q_n \right)$$
(1.1.1)

is called the *mixed discriminant* of Q_1, \ldots, Q_n (sometimes, the normalizing factor of 1/n! is used). Mixed discriminants were introduced by A.D. Alexandrov in his work on mixed volumes [1], see also [8]. They also have some interesting combinatorial applications, see Chapter V of [3].

Mixed discriminants generalize permanents. If the matrices Q_1, \ldots, Q_n are diagonal, so that

$$Q_i = \operatorname{diag}\left(a_{i1}, \ldots, a_{in}\right) \quad \text{for} \quad i = 1, \ldots, n,$$

then

$$D(Q_1, \dots, Q_n) = \operatorname{per} A \quad \text{where} \quad A = (a_{ij}) \tag{1.1.2}$$

and

$$\operatorname{per} A = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i\sigma(i)}$$

is the *permanent* of an $n \times n$ matrix A. Here the *i*-th row of A is the diagonal of Q_i and S_n is the symmetric group of all n! permutations of the set $\{1, \ldots, n\}$.

1.2. Doubly stochastic n-tuples

If Q_1, \ldots, Q_n are positive semidefinite matrices then $D(Q_1, \ldots, Q_n) \ge 0$, see [8]. We say that the *n*-tuple (Q_1, \ldots, Q_n) is *doubly stochastic* if Q_1, \ldots, Q_n are positive semidefinite,

$$Q_1 + \ldots + Q_n = I$$
 and $\operatorname{tr} Q_1 = \ldots = \operatorname{tr} Q_n = 1$,

where I is the $n \times n$ identity matrix and tr Q is the trace of Q. We note that if Q_1, \ldots, Q_n are diagonal then the *n*-tuple (Q_1, \ldots, Q_n) is doubly stochastic if and only if the matrix A in (1.1.2) is doubly stochastic, that is, non-negative and has row and column sums 1.

In [2] Bapat conjectured what should be the mixed discriminant version of the van der Waerden inequality for permanents: if (Q_1, \ldots, Q_n) is a doubly stochastic *n*-tuple then

$$D(Q_1, \dots, Q_n) \ge \frac{n!}{n^n} \tag{1.2.1}$$

Download English Version:

https://daneshyari.com/en/article/6416160

Download Persian Version:

https://daneshyari.com/article/6416160

Daneshyari.com