

The Flanders theorem over division rings

Clément de Seguins Pazzis

Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Mathématiques de Versailles, 45 avenue des Etats-Unis, 78035 Versailles cedex, France

ARTICLE INFO

Article history: Received 8 April 2015 Accepted 7 November 2015 Available online 18 December 2015 Submitted by P. Semrl

MSC: 15A03 15A30

Keywords: Rank Bounded rank spaces Flanders's theorem Dimension Division ring

ABSTRACT

Let \mathbb{D} be a division ring and \mathbb{F} be a subfield of the center of \mathbb{D} over which \mathbb{D} has finite dimension d. Let n, p, r be positive integers and \mathcal{V} be an affine subspace of the \mathbb{F} -vector space $M_{n,p}(\mathbb{D})$ in which every matrix has rank less than or equal to r. Using a new method, we prove that $\dim_{\mathbb{F}} \mathcal{V} \leq \max(n, p) rd$ and we characterize the spaces for which equality holds. This extends a famous theorem of Flanders which was known only for fields.

 \odot 2015 Elsevier Inc. All rights reserved.

CrossMark

1. Introduction

Throughout the text, we fix a division ring \mathbb{D} , that is a non-trivial ring in which every non-zero element is invertible. We let \mathbb{F} be a subfield of the center $\mathcal{Z}(\mathbb{D})$ of \mathbb{D} and we assume that \mathbb{D} has finite dimension over \mathbb{F} .

Let *n* and *p* be non-negative integers. We denote by $M_{n,p}(\mathbb{D})$ the set of all matrices with *n* rows, *p* columns, and entries in \mathbb{D} . It has a natural structure of \mathbb{F} -vector space, which we will consider throughout the text. The kernel (or null-space) of a matrix $M \in M_{n,p}(\mathbb{D})$ is

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2015.11.022} 0024-3795 \end{tabular} 0025$ Elsevier Inc. All rights reserved.

E-mail address: dsp.prof@gmail.com.

defined as $\{X \in \mathbb{D}^p : MX = 0\}$ and denoted by Ker M. We denote by $E_{i,j}$ the matrix of $\mathcal{M}_{n,p}(\mathbb{D})$ in which all the entries equal 0, except the one at the (i, j)-spot, which equals 1. The right \mathbb{D} -vector space \mathbb{D}^n is naturally identified with the space $\mathcal{M}_{n,1}(\mathbb{D})$ of column matrices (with n rows). We naturally identify $\mathcal{M}_{n,p}(\mathbb{D})$ with the set of all \mathbb{D} -linear maps from the right vector space \mathbb{D}^p to the right vector space \mathbb{D}^n . We have a ring structure on $\mathcal{M}_n(\mathbb{D}) := \mathcal{M}_{n,n}(\mathbb{D})$ with unity I_n , and its group of units is denoted by $\mathrm{GL}_n(\mathbb{D})$.

Two matrices M and N of $M_{n,p}(\mathbb{D})$ are said to be *equivalent* when there are invertible matrices $P \in GL_n(\mathbb{D})$ and $Q \in GL_p(\mathbb{D})$ such that N = PMQ (this means that M and N represent the same linear map between right vector spaces over \mathbb{D} under a different choice of bases). This relation is naturally extended to whole subsets of matrices.

The rank of a matrix $M \in M_{n,p}(\mathbb{D})$ is the rank of the family of its columns in the right \mathbb{D} -vector space \mathbb{D}^n , and it is known that it equals the rank of the family of its rows in the left \mathbb{D} -vector space $M_{1,p}(\mathbb{D})$: we denote it by $\operatorname{rk}(M)$. Two matrices of the same size have the same rank if and only if they are equivalent.

Given a non-negative integer r, a rank- \overline{r} subset of $M_{n,p}(\mathbb{D})$ is a subset in which every matrix has rank less than or equal to r.

Let s and t be non-negative integers with $s \leq n$ and $t \leq p$. One defines the *compression* space

$$\mathcal{R}(s,t) := \left\{ \begin{bmatrix} A & C \\ B & [0]_{(n-s)\times(p-t)} \end{bmatrix} \mid A \in \mathcal{M}_{s,t}(\mathbb{D}), \ B \in \mathcal{M}_{n-s,t}(\mathbb{D}), \ C \in \mathcal{M}_{s,p-t}(\mathbb{D}) \right\}.$$

It is obviously an \mathbb{F} -linear subspace of $M_{n,p}(\mathbb{D})$ and a rank- $\overline{s+t}$ subset. More generally, any space that is equivalent to a space of that form is called a compression space.

A classical theorem of Flanders [4] reads as follows.

Theorem 1 (Flanders's theorem). Let \mathbb{F} be a field, and n, p, r be positive integers such that $n \geq p > r$. Let \mathcal{V} be a rank- \overline{r} linear subspace of $M_{n,p}(\mathbb{F})$. Then, dim $\mathcal{V} \leq nr$, and if equality holds then either \mathcal{V} is equivalent to $\mathcal{R}(0,r)$, or n = p and \mathcal{V} is equivalent to $\mathcal{R}(r, 0)$.

The case when $n \leq p$ can be obtained effortlessly by transposing.

Flanders's theorem has a long history dating back to Dieudonné [3], who tackled the case when n = p and r = n - 1 (that is, subspaces of singular matrices). Dieudonné was motivated by the study of semi-linear invertibility preservers on square matrices. Flanders came actually second [4] and, due to his use of determinants, he was only able to prove his results over fields with more than r elements (he added the restriction that the field should not be of characteristic 2, but a close examination of his proof reveals that it is unnecessary). The extension to general fields was achieved more than two decades later by Meshulam [5]. In the meantime, much progress had been made in the classification of rank- \overline{r} subspaces with dimension close to the critical one, over fields with large cardinality (see [1] for square matrices, and [2] for the generalization to rectangular

Download English Version:

https://daneshyari.com/en/article/6416174

Download Persian Version:

https://daneshyari.com/article/6416174

Daneshyari.com