

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

The smallest eigenvalues of the 1-point fixing graph

LINEAR

olications

Cheng Yeaw Ku^a, Terry Lau^b, Kok Bin Wong^{b,*}

 ^a Department of Mathematics, National University of Singapore, Singapore
^b Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

ARTICLE INFO

Article history: Received 12 March 2015 Accepted 10 December 2015 Available online 29 December 2015 Submitted by R. Brualdi

MSC: 05C50 05A05

Keywords: Arrangement graph Cayley graphs Symmetric group

ABSTRACT

Let S_n be the symmetric group on $\{1, \ldots, n\}$. The k-point fixing graph $\mathcal{F}(n, k)$ is defined to be the graph with vertex set S_n and two vertices g, h of $\mathcal{F}(n, k)$ are joined if and only if gh^{-1} fixes exactly k points. In this paper, we determine the smallest eigenvalue for $\mathcal{F}(n, 1)$.

@ 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a finite group and S be an inverse closed subset of G, i.e., $1 \notin S$ and $s \in S \Rightarrow s^{-1} \in S$. The Cayley graph $\Gamma(G, S)$ is the graph which has the elements of G as its vertices and two vertices $u, v \in G$ are joined by an edge if and only if v = su for some $s \in S$.

^{*} Corresponding author.

E-mail addresses: matkcy@nus.edu.sg (C.Y. Ku), terrylsc@hotmail.com (T. Lau), kbwong@um.edu.my (K.B. Wong).

A Cayley graph $\Gamma(G, S)$ is said to be *normal* if S is closed under conjugation. It is well known that the eigenvalues of a normal Cayley graph $\Gamma(G, S)$ can be expressed in terms of the irreducible characters of G.

Theorem 1.1. (See [1,5,18,19].) The eigenvalues of a normal Cayley graph $\Gamma(G,S)$ are given by

$$\eta_{\chi} = \frac{1}{\chi(1)} \sum_{s \in S} \chi(s),$$

where χ ranges over all the irreducible characters of G. Moreover, the multiplicity of η_{χ} is $\chi(1)^2$.

Let S_n be the symmetric group on $[n] = \{1, \ldots, n\}$ and $S \subseteq S_n$ be closed under conjugation. Since central characters are algebraic integers [12, Theorem 3.7 on p. 36] and that the characters of the symmetric group are integers ([12, 2.12 on p. 31] or [22, Corollary 2 on p. 103]), by Theorem 1.1, the eigenvalues of $\Gamma(S_n, S)$ are integers.

Corollary 1.2. The eigenvalues of a normal Cayley graph $\Gamma(S_n, S)$ are integers.

For $k \leq n$, a k-permutation of [n] is an injective function from [k] to [n]. So any k-permutation π can be represented by a vector (i_1, \ldots, i_k) where $\pi(j) = i_j$ for $j = 1, \ldots, k$. Let $1 \leq r \leq k \leq n$. The (n, k, r)-arrangement graph A(n, k, r) has all the k-permutations of [n] as vertices and two k-permutations are adjacent if they differ in exactly r positions. Formally, the vertex set V(n, k) and edge set E(n, k, r) of A(n, k, r) are

$$V(n,k) = \{ (p_1, p_2, \dots, p_k) \mid p_i \in [n] \text{ and } p_i \neq p_j \text{ for } i \neq j \},\$$

$$E(n,k,r) = \{ \{ (p_1, p_2, \dots, p_k), (q_1, q_2, \dots, q_k) \} \mid p_i \neq q_i \text{ for } i \in R \text{ and}$$

$$p_j = q_j \text{ for all } j \in [k] \setminus R \text{ for some } R \subseteq [k] \text{ with } |R| = r \}$$

Note that |V(n,k)| = n!/(n-k)! and A(n,k,r) is a regular graph [3, Theorem 4.2]. In particular, A(n,k,1) is a k(n-k)-regular graph. We note here that A(n,k,1) was first introduced in [4] as an interconnection network model for parallel computation. Furthermore, A(n,k,1) is called the partial permutation graph by Krakovski and Mohar in [13]. The eigenvalues of the arrangement graphs A(n,k,1) were first studied in [2] by using a method developed by Godsil and McKay [10]. A relation between the eigenvalues of A(n,k,r) and certain Cayley graphs was given in [3].

The derangement graph Γ_n is the Cayley graph $\Gamma(S_n, D_n)$ where D_n is the set of derangements in S_n . That is, two vertices g, h of Γ_n are joined if and only if $g(i) \neq h(i)$ for all $i \in [n]$, or equivalently gh^{-1} fixes no point. Since D_n is closed under conjugation, by Corollary 1.2, the eigenvalues of the derangement graph are integers. The lower and

Download English Version:

https://daneshyari.com/en/article/6416187

Download Persian Version:

https://daneshyari.com/article/6416187

Daneshyari.com