The smallest eigenvalues of the 1-point fixing graph

Cheng Yeaw Ku ${ }^{\text {a }}$, Terry Lau ${ }^{\mathrm{b}}$, Kok Bin Wong ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Department of Mathematics, National University of Singapore, Singapore
117543, Singapore
${ }^{\text {b }}$ Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

A R T I C L E I N F O

Article history:

Received 12 March 2015
Accepted 10 December 2015
Available online 29 December 2015
Submitted by R. Brualdi

MSC:

05 C 50
05A05
Keywords:
Arrangement graph
Cayley graphs
Symmetric group

A B S T R A C T

Let \mathcal{S}_{n} be the symmetric group on $\{1, \ldots, n\}$. The k-point fixing graph $\mathcal{F}(n, k)$ is defined to be the graph with vertex set \mathcal{S}_{n} and two vertices g, h of $\mathcal{F}(n, k)$ are joined if and only if $g h^{-1}$ fixes exactly k points. In this paper, we determine the smallest eigenvalue for $\mathcal{F}(n, 1)$.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a finite group and S be an inverse closed subset of G, i.e., $1 \notin S$ and $s \in S \Rightarrow s^{-1} \in S$. The Cayley graph $\Gamma(G, S)$ is the graph which has the elements of G as its vertices and two vertices $u, v \in G$ are joined by an edge if and only if $v=s u$ for some $s \in S$.

[^0]A Cayley graph $\Gamma(G, S)$ is said to be normal if S is closed under conjugation. It is well known that the eigenvalues of a normal Cayley graph $\Gamma(G, S)$ can be expressed in terms of the irreducible characters of G.

Theorem 1.1. (See [1,5,18,19].) The eigenvalues of a normal Cayley graph $\Gamma(G, S)$ are given by

$$
\eta_{\chi}=\frac{1}{\chi(1)} \sum_{s \in S} \chi(s)
$$

where χ ranges over all the irreducible characters of G. Moreover, the multiplicity of η_{χ} is $\chi(1)^{2}$.

Let \mathcal{S}_{n} be the symmetric group on $[n]=\{1, \ldots, n\}$ and $S \subseteq \mathcal{S}_{n}$ be closed under conjugation. Since central characters are algebraic integers [12, Theorem 3.7 on p. 36] and that the characters of the symmetric group are integers ([12, 2.12 on p. 31] or [22, Corollary 2 on p. 103]), by Theorem 1.1, the eigenvalues of $\Gamma\left(\mathcal{S}_{n}, S\right)$ are integers.

Corollary 1.2. The eigenvalues of a normal Cayley graph $\Gamma\left(\mathcal{S}_{n}, S\right)$ are integers.
For $k \leq n$, a k-permutation of $[n]$ is an injective function from $[k]$ to $[n]$. So any k-permutation π can be represented by a vector $\left(i_{1}, \ldots, i_{k}\right)$ where $\pi(j)=i_{j}$ for $j=$ $1, \ldots, k$. Let $1 \leq r \leq k \leq n$. The ($n, k, r)$-arrangement graph $A(n, k, r)$ has all the k-permutations of $[n]$ as vertices and two k-permutations are adjacent if they differ in exactly r positions. Formally, the vertex set $V(n, k)$ and edge set $E(n, k, r)$ of $A(n, k, r)$ are

$$
\begin{aligned}
V(n, k)= & \left\{\left(p_{1}, p_{2}, \ldots, p_{k}\right) \mid p_{i} \in[n] \text { and } p_{i} \neq p_{j} \text { for } i \neq j\right\}, \\
E(n, k, r)=\{ & \left\{\left(p_{1}, p_{2}, \ldots, p_{k}\right),\left(q_{1}, q_{2}, \ldots, q_{k}\right)\right\} \mid p_{i} \neq q_{i} \text { for } i \in R \text { and } \\
& \left.p_{j}=q_{j} \text { for all } j \in[k] \backslash R \text { for some } R \subseteq[k] \text { with }|R|=r\right\} .
\end{aligned}
$$

Note that $|V(n, k)|=n!/(n-k)!$ and $A(n, k, r)$ is a regular graph [3, Theorem 4.2]. In particular, $A(n, k, 1)$ is a $k(n-k)$-regular graph. We note here that $A(n, k, 1)$ was first introduced in [4] as an interconnection network model for parallel computation. Furthermore, $A(n, k, 1)$ is called the partial permutation graph by Krakovski and Mohar in [13]. The eigenvalues of the arrangement graphs $A(n, k, 1)$ were first studied in [2] by using a method developed by Godsil and McKay [10]. A relation between the eigenvalues of $A(n, k, r)$ and certain Cayley graphs was given in [3].

The derangement graph Γ_{n} is the Cayley graph $\Gamma\left(\mathcal{S}_{n}, D_{n}\right)$ where D_{n} is the set of derangements in \mathcal{S}_{n}. That is, two vertices g, h of Γ_{n} are joined if and only if $g(i) \neq h(i)$ for all $i \in[n]$, or equivalently $g h^{-1}$ fixes no point. Since D_{n} is closed under conjugation, by Corollary 1.2, the eigenvalues of the derangement graph are integers. The lower and

https://daneshyari.com/en/article/6416187

Download Persian Version:

https://daneshyari.com/article/6416187

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: matkcy@nus.edu.sg (C.Y. Ku), terrylsc@hotmail.com (T. Lau), kbwong@um.edu.my (K.B. Wong).

