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1. Introduction

Let G be a finite group and S be an inverse closed subset of G, ie., 1 ¢ S and
s€ S = steS. The Cayley graph T'(G,S) is the graph which has the elements of G
as its vertices and two vertices u,v € G are joined by an edge if and only if v = su for
some s € S.
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A Cayley graph I'(G, S) is said to be normal if S is closed under conjugation. It is
well known that the eigenvalues of a normal Cayley graph I'(G, S) can be expressed in
terms of the irreducible characters of G.

Theorem 1.1. (See [1,5,18,19].) The eigenvalues of a normal Cayley graph T'(G,S) are
given by

1
x = m ZX(S),

ses

where x ranges over all the irreducible characters of G. Moreover, the multiplicity of 1,
is x(1)2.

Let S, be the symmetric group on [n] = {1,...,n} and S C S, be closed under
conjugation. Since central characters are algebraic integers [12, Theorem 3.7 on p. 36]
and that the characters of the symmetric group are integers ([12, 2.12 on p. 31] or [22,
Corollary 2 on p. 103]), by Theorem 1.1, the eigenvalues of I'(S,,, ) are integers.

Corollary 1.2. The eigenvalues of a normal Cayley graph T'(S,, S) are integers.

For k < n, a k-permutation of [n] is an injective function from [k] to [n]. So any
k-permutation 7 can be represented by a vector (i1,...,ix) where 7(j) = i; for j =
1,...0k. Let 1 < r < k < n. The (n,k,r)-arrangement graph A(n,k,r) has all the
k-permutations of [n] as vertices and two k-permutations are adjacent if they differ in
exactly r positions. Formally, the vertex set V(n, k) and edge set E(n,k,r) of A(n,k,r)
are

V(n,k) = {(p1,p2,---.p&) | pi € [n] and p; # p; for i # j},
E(n,k,7) = {{(p1,p2, .- Pk) (@1, G2, - ;) } | pi # @i for i € R and
pj = gq; for all j € [k] \ R for some R C [k] with |R| =r}.

Note that |V (n, k)| = n!/(n — k)! and A(n,k,r) is a regular graph [3, Theorem 4.2].
In particular, A(n,k,1) is a k(n — k)-regular graph. We note here that A(n,k,1) was
first introduced in [4] as an interconnection network model for parallel computation.
Furthermore, A(n, k, 1) is called the partial permutation graph by Krakovski and Mohar
n [13]. The eigenvalues of the arrangement graphs A(n, k, 1) were first studied in [2] by
using a method developed by Godsil and McKay [10]. A relation between the eigenvalues
of A(n,k,r) and certain Cayley graphs was given in [3].

The derangement graph T, is the Cayley graph I'(S,,D,,) where D, is the set of
derangements in S,,. That is, two vertices g, h of T',, are joined if and only if g(¢) # h(i)
for all i € [n], or equivalently gh™! fixes no point. Since D, is closed under conjugation,
by Corollary 1.2, the eigenvalues of the derangement graph are integers. The lower and
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