Eigenvalue multiplicity in triangle-free graphs

Peter Rowlinson*
Mathematics and Statistics Group, Institute of Computing Science and Mathematics, University of Stirling, Scotland FK9 4LA, United Kingdom

A R T I C L E I N F O

Article history:

Received 7 April 2015
Accepted 10 December 2015
Available online 29 December 2015
Submitted by R. Brualdi

MSC:

05C50

Keywords:
Bipartite graph
Eigenvalue
Star complement
Strongly regular graph
Triangle-free graph

A B S T R A C T

Let G be a connected triangle-free graph of order $n>5$ with $\mu \notin\{-1,0\}$ as an eigenvalue of multiplicity $k>1$. We show that if d is the maximum degree in G then $k \leq n-d-1$; moreover, if $k=n-d-1$ then either (a) G is non-bipartite and $k \leq\left(\mu^{2}+3 \mu+1\right)\left(\mu^{2}+2 \mu-1\right)$, with equality only if G is strongly regular, or (b) G is bipartite and $k \leq d-1$, with equality only if G is a bipolar cone. In each case we discuss the extremal graphs that arise.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a graph of order n with μ as an eigenvalue of multiplicity k, and let $t=n-k$. Thus if G has $(0,1)$-adjacency matrix A then the eigenspace $\mathcal{E}_{A}(\mu)$ has dimension k and codimension t. From [1, Theorem 3.1], we know that if $\mu \notin\{-1,0\}$ and $t>2$ then $k \leq n-\frac{1}{2}(-1+\sqrt{8 n+1})$, equivalently $k \leq \frac{1}{2} t(t-1)$. This bound, which is sharp for $t=8$, has been improved for several classes of graphs, such as regular graphs [1], cubic graphs [12], trees [10], and graphs with prescribed girth [11]. For each class, it is of

[^0]interest to describe the graphs for which a sharp bound is attained. Here we investigate the situation in which G is a connected triangle-free graph with maximum degree d. We show first that if $\mu \notin\{-1,0\}$ and G is not a star then $k \leq n-d-1$: this bound (which is immediate from interlacing when $\mu^{2} \neq d$) is an improvement on the general bound when $d>\frac{1}{2}(-3+\sqrt{8 n+1})$. Next we prove that when $k=n-1-d$, equivalently $t=d+1$, the following hold: (i) G has the star $K_{1, d}$ as a star complement for μ, (ii) if G is non-bipartite of order $n>5$ then $d=\mu\left(\mu^{2}+3 \mu+1\right)$ and $k \leq\left(\mu^{2}+3 \mu+1\right)\left(\mu^{2}+2 \mu-1\right)$, with equality if and only if $\mu \in \mathbb{N}$ and G is strongly regular with parameters $\left(\mu^{2}+3 \mu\right)^{2}$, $\mu\left(\mu^{2}+3 \mu+1\right), 0, \mu(\mu+1)$, (iii) if G is bipartite then $k \leq d-1$. The idea of the proof is to show that when k is as large as possible, G is regular or bipartite, so that we may apply the results of [14] or [13] respectively. It follows that in both cases there is a close relation between symmetric 2 -designs and the extremal graphs that arise. The bipartite graphs for which $n-1-d=k=d-1$ are discussed further in Section 4.

We write $G=\operatorname{SRG}(n, r, e, f)$ to mean that G is strongly regular with parameters n, r, e, f. Note that if $G=S R G\left(\left(\mu^{2}+3 \mu\right)^{2}, \mu\left(\mu^{2}+3 \mu+1\right), 0, \mu(\mu+1)\right)$ then any induced subgraph of G containing $K_{1, d}$ is a triangle-free graph satisfying the condition $t=d+1$ in respect of the eigenvalue μ. The specific graphs cited in Section 3 show that not all examples arise in this way, even when $d=\mu\left(\mu^{2}+3 \mu+1\right)$ and μ is taken to be a non-main eigenvalue (that is, an eigenvalue for which $\mathcal{E}_{A}(\mu)$ is orthogonal to the all-1 vector in \mathbb{R}^{n}).

2. Preliminaries

Let G be a graph of order n with μ as an eigenvalue of multiplicity k. A star set for μ in G is a subset X of the vertex-set $V(G)$ such that $|X|=k$ and the induced subgraph $G-X$ does not have μ as an eigenvalue. In this situation, $G-X$ is called a star complement for μ in G. The fundamental properties of star sets and star complements are established in [3, Chapter 5]. We shall require the following results, where for any $X \subseteq V(G)$, we write G_{X} for the subgraph of G induced by X. We take $V(G)=\{1, \ldots, n\}$, and write $u \sim v$ to mean that vertices u and v are adjacent. Further notation may be found in the monograph [3].

Theorem 2.1. (See [3, Theorem 5.1.7].) Let X be a set of vertices in the graph G. Suppose that G has adjacency matrix $\left(\begin{array}{cc}A_{X} & B^{\top} \\ B & C\end{array}\right)$, where A_{X} is the adjacency matrix of G_{X}. Then X is a star set for μ in G if and only if μ is not an eigenvalue of C and

$$
\begin{equation*}
\mu I-A_{X}=B^{\top}(\mu I-C)^{-1} B \tag{1}
\end{equation*}
$$

With the notation of Theorem 2.1, let X be a star set for μ in G, and let $H=G-X$. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n-k}$, we write $\langle\langle\mathbf{x}, \mathbf{y}\rangle\rangle=\mathbf{x}^{\top}(\mu I-C)^{-1} \mathbf{y}$. The columns $\mathbf{b}_{u}(u \in X)$ of B are the characteristic vectors of the H-neighbourhoods $\Delta_{H}(u)=\{v \in V(H): u \sim v\}$ ($u \in X$). Eq. (1) shows that

https://daneshyari.com/en/article/6416195

Download Persian Version:

https://daneshyari.com/article/6416195

Daneshyari.com

[^0]: * Tel.: +441786 467468; fax: +441786464551 .

 E-mail address: p.rowlinson@stirling.ac.uk.

