Upper triangular matrices and Billiard Arrays

Yang Yang
Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA

A R T I C L E I N F O

Article history:

Received 12 September 2015
Accepted 21 December 2015
Available online 4 January 2016
Submitted by R. Brualdi

$M S C$:

primary 05E15
secondary 15A21

Keywords:
Upper triangular matrix
Billiard Array
Flag
Quantum group
Equitable presentation

Abstract

Fix a nonnegative integer d, a field \mathbb{F}, and a vector space V over \mathbb{F} with dimension $d+1$. Let T denote an invertible upper triangular matrix in $\operatorname{Mat}_{d+1}(\mathbb{F})$. Using T we construct three flags on V. We find a necessary and sufficient condition on T for these three flags to be totally opposite. In this case, we use these three totally opposite flags to construct a Billiard Array B on V. It is known that B is determined up to isomorphism by a certain triangular array of scalar parameters called the B-values. We compute these B-values in terms of the entries of T. We describe the set of isomorphism classes of Billiard Arrays in terms of upper triangular matrices.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

This paper is about a connection between upper triangular matrices and Billiard Arrays. The Billiard Array concept was introduced in [15]. This concept is closely related to the equitable presentation of $U_{q}\left(\mathfrak{s l}_{2}\right)[10,15]$. For more information about the equitable presentation, see $[1,3,5-9,12-14,16]$.

We now summarize our results. Fix a nonnegative integer d, a field \mathbb{F}, and a vector space V over \mathbb{F} with dimension $d+1$. Let T denote an invertible upper triangular matrix

[^0]in $\operatorname{Mat}_{d+1}(\mathbb{F})$. View T as the transition matrix from a basis $\left\{u_{i}\right\}_{i=0}^{d}$ of V to a basis $\left\{v_{i}\right\}_{i=0}^{d}$ of V. Using T we construct three flags $\left\{U_{i}\right\}_{i=0}^{d},\left\{U_{i}^{\prime}\right\}_{i=0}^{d},\left\{U_{i}^{\prime \prime}\right\}_{i=0}^{d}$ on V as follows. For $0 \leq i \leq d$,
\[

$$
\begin{gathered}
U_{i}=\mathbb{F} u_{0}+\mathbb{F} u_{1}+\cdots+\mathbb{F} u_{i}=\mathbb{F} v_{0}+\mathbb{F} v_{1}+\cdots+\mathbb{F} v_{i} ; \\
U_{i}^{\prime}=\mathbb{F} u_{d}+\mathbb{F} u_{d-1}+\cdots+\mathbb{F} u_{d-i} ; \\
U_{i}^{\prime \prime}=\mathbb{F} v_{d}+\mathbb{F} v_{d-1}+\cdots+\mathbb{F} v_{d-i} .
\end{gathered}
$$
\]

In our first main result, we find a necessary and sufficient condition (called very good) on T for $\left\{U_{i}\right\}_{i=0}^{d},\left\{U_{i}^{\prime}\right\}_{i=0}^{d},\left\{U_{i}^{\prime \prime}\right\}_{i=0}^{d}$ to be totally opposite in the sense of $[15$, Definition 12.1].

In [15, Theorem 12.7] it is shown how three totally opposite flags on V correspond to a Billiard Array on V. Assume that the three flags $\left\{U_{i}\right\}_{i=0}^{d},\left\{U_{i}^{\prime}\right\}_{i=0}^{d},\left\{U_{i}^{\prime \prime}\right\}_{i=0}^{d}$ are totally opposite, and let B denote the corresponding Billiard Array on V. By [15, Lemma 19.1] B is determined up to isomorphism by a certain triangular array of scalar parameters called the B-values. In our second main result, we compute these B-values in terms of the entries of T.

Let $\mathcal{T}_{d}(\mathbb{F})$ denote the set of very good upper triangular matrices in $\operatorname{Mat}_{d+1}(\mathbb{F})$. Define an equivalence relation \sim on $\mathcal{T}_{d}(\mathbb{F})$ as follows. For $T, T^{\prime} \in \mathcal{T}_{d}(\mathbb{F})$, we declare $T \sim T^{\prime}$ whenever there exist invertible diagonal matrices $H, K \in \operatorname{Mat}_{d+1}(\mathbb{F})$ such that $T^{\prime}=$ $H T K$. In our third main result, we display a bijection between the following two sets:
(i) the equivalence classes for \sim on $\mathcal{T}_{d}(\mathbb{F})$;
(ii) the isomorphism classes of Billiard Arrays on V.

We give a commutative diagram that illustrates our second and third main results. At the end of this paper, we give an example. In this example, we display a very good upper triangular matrix with entries given by q-binomial coefficients. We show that for the corresponding Billiard Array B, all the B-values are equal to q^{-1}.

The paper is organized as follows. Section 2 contains some preliminaries. Section 3 contains necessary facts about decompositions and flags. Section 4 is devoted to the correspondence between very good upper triangular matrices and totally opposite flags. This section contains our first main result. Section 5 contains necessary facts about Billiard Arrays. In Sections 6-8 we obtain our second and third main results. In Section 9, we display an example to illustrate our theory.

2. Preliminaries

Throughout the paper, we fix the following notation. Let \mathbb{R} denote the field of real numbers. Recall the ring of integers $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$ and the set of natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$. Fix $d \in \mathbb{N}$. Let $\left\{x_{i}\right\}_{i=0}^{d}$ denote a sequence. We call x_{i} the i-component of

https://daneshyari.com/en/article/6416201

Download Persian Version:

https://daneshyari.com/article/6416201

Daneshyari.com

[^0]: E-mail address: yyang@math.wisc.edu.

