Contour integral solutions of Sylvester-type matrix equations

Harald K. Wimmer
Mathematisches Institut, Universität Würzburg, 97074 Würzburg, Germany

A R T I C L E I N F O

Article history:

Received 12 December 2015
Accepted 31 December 2015
Available online 5 January 2016
Submitted by R. Brualdi

MSC:

15A24
15A22
47A60

Keywords:

Generalized Sylvester equation
*-Sylvester equation
*-Stein equation
Contour integrals
Matrix pencils

Abstract

The linear matrix equations $A X B-C X D=E, A X-$ $X^{*} D=E$, and $A X B-X^{*}=E$ are studied. In the case of uniqueness the solutions are expressed in terms of contour integrals.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this note we use contour integrals to study the matrix equations

$$
\begin{equation*}
A X B-C X D=E \tag{1}
\end{equation*}
$$

E-mail address: wimmer@mathematik.uni-wuerzburg.de.
http://dx.doi.org/10.1016/j.laa.2015.12.027
0024-3795/© 2016 Elsevier Inc. All rights reserved.
and

$$
\begin{equation*}
A X-X^{*} D=E \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
A X B-X^{*}=E \tag{3}
\end{equation*}
$$

We assume $A, C \in \mathbb{C}^{m \times m}$ and $B, D \in \mathbb{C}^{n \times n}$ and $E \in \mathbb{C}^{m \times n}$, and $m=n$ in (2) and (3). The generalized Sylvester equation (1) appears in sensitivity problems of eigenvalues [12], in numerical solutions of implicit ordinary differential equations [6], and in a Lyapunov theory of descriptor systems [1]. Equation (2) - where X^{*} denotes the conjugate transpose of X - plays a role in palindromic eigenvalue problems $[2,9]$. The main reference to (3) is [13]. Besides (2) and (3) equations of the form $A X-X^{T} D=E$ and $X-C X^{T} D=E$ - where X^{T} is the transpose of X - have been studied e.g. in $[5,13,3]$.

Conditions for uniqueness of solutions of (1)-(3) involve matrix pencils and their spectra. Let the pencil $z C-A$ be regular, that is $\operatorname{det}(\lambda C-A) \neq 0$ for some $\lambda \in \mathbb{C}$. We set

$$
\sigma(z C-A)=\{\lambda ; \operatorname{det}(\lambda C-A)=0\} \cup\left\{\lambda ; \operatorname{det}\left(C-\lambda^{-1} A\right)=0\right\}
$$

Then $0 \in \sigma(z C-A)$ is equivalent to $\operatorname{det} A=0$. By convention $1 / \infty=0$ and $1 / 0=\infty$. Thus $\infty \in \sigma(z C-A)$ if and only if $\operatorname{det} C=0$. A contour in the complex plane will always mean a positively oriented simple closed curve.

2. Explicit solutions by contour integrals

2.1. The generalized Sylvester equation

It is known (see [4]) that equation (1) has a unique solution if and only if the matrix pencils

$$
\begin{equation*}
z C-A \text { and } z B-D \text { are regular, } \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma(z C-A) \cap \sigma(z B-D)=\emptyset \tag{5}
\end{equation*}
$$

In the following we give an explicit description of the unique solution of (1).
Theorem 2.1. If the conditions (4) and (5) are satisfied then there exists a contour γ such that $\sigma(z C-A)$ is in the interior of γ and $\sigma(z B-D)$ is outside of γ. The unique solution of (1) is given by

$$
\begin{equation*}
X=\frac{1}{2 \pi i} \oint_{\gamma}(z C-A)^{-1} E(z B-D)^{-1} d z \tag{6}
\end{equation*}
$$

https://daneshyari.com/en/article/6416203

Download Persian Version:

https://daneshyari.com/article/6416203

Daneshyari.com

