On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problems

Daniel Kressner ${ }^{\text {a }}$, André Uschmajew ${ }^{\text {b,* }}$
${ }^{\text {a }}$ ANCHP, MATHICSE, EPFL, 1015 Lausanne, Switzerland
${ }^{\text {b }}$ Hausdorff Center for Mathematics \& Institute for Numerical Simulation, University of Bonn, 53115 Bonn, Germany

A R T I C L E I N F O

Article history:

Received 24 April 2015
Accepted 17 December 2015
Available online 6 January 2016
Submitted by V. Mehrmann

$M S C$:

15A18
15A69
41A25
41A46
41A63
65 J 10

Keywords:
Low-rank tensor approximation
High-dimensional equations
Singular value decay
Richardson iteration

Abstract

Low-rank tensor approximation techniques attempt to mitigate the overwhelming complexity of linear algebra tasks arising from high-dimensional applications. In this work, we study the low-rank approximability of solutions to linear systems and eigenvalue problems on Hilbert spaces. Although this question is central to the success of all existing solvers based on low-rank tensor techniques, very few of the results available so far allow to draw meaningful conclusions for higher dimensions. In this work, we develop a constructive framework to study low-rank approximability. One major assumption is that the involved linear operator admits a low-rank representation with respect to the chosen tensor format, a property that is known to hold in a number of applications. Simple conditions, which are shown to hold for a fairly general problem class, guarantee that our derived low-rank truncation error estimates do not deteriorate as the dimensionality increases.

© 2015 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

The past few years have seen a growing activity in applying low-rank tensor techniques to the approximate solution of high-dimensional problems, see, e.g., $[11,13]$ for survey. The success of these techniques crucially depends on the ability to approximate the object of interest by a tensor of low rank with respect to the chosen tensor format. Although this property has been frequently confirmed in practice, there is little theoretical insight into this matter so far.

An important special case of the problems considered in this work are matrix equations of the form $\mathbf{A}(U)=B$ for a linear operator $\mathbf{A}: \mathbb{R}^{M \times N} \rightarrow \mathbb{R}^{M \times N}$. Clearly, any such operator can be written in the form

$$
\mathbf{A}(U)=A_{1}^{(1)} U A_{1}^{(2)}+A_{2}^{(1)} U A_{2}^{(2)}+\cdots+A_{r_{\mathrm{A}}}^{(1)} U A_{r_{\mathbf{A}}}^{(2)}, \quad A_{i}^{(1)} \in \mathbb{R}^{M \times M}, \quad A_{i}^{(2)} \in \mathbb{R}^{N \times N}
$$

for some $r_{\mathbf{A}} \leq M N$. For $r_{\mathbf{A}}=1$ and invertible matrices $A_{1}^{(1)}, A_{1}^{(2)}$ the rank of the solution U equals the rank of B. This property does not hold for $r_{\mathbf{A}} \geq 2$ and one then considers the question of low-rank approximability of U, that is, the decay of its singular values. Particular attention has been paid to the case of a Lyapunov matrix equation

$$
A U+U A^{T}=B
$$

for a matrix B of low rank, which plays an important role in control and model reduction, see, e.g., [6]. A number of works [$1,4,9,10,12,25,26]$ have been devoted to studying lowrank approximability for this problem. In particular, it has be shown that the singular values of U decay exponentially when A is symmetric positive definite. All existing proof techniques implicitly rely on the fact that the two operators $U \mapsto A U$ and $U \mapsto U A^{T}$ commute. In particular, this allows for the simultaneous diagonalization of both operators, which greatly simplifies the approximation problem. When this commutativity property is lost, these techniques fail. For example, only partial results [5,21] are available so far for the innocently looking modification

$$
A U+U A^{T}+C U C^{T}=B
$$

for general matrix C, which plays a role in bilinear and stochastic control. This indicates that we cannot expect to obtain exponential singular value decay for such generalizations.

In general, we consider linear systems and eigenvalue problems of the form

$$
\begin{equation*}
\mathbf{A} \mathbf{u}=\mathbf{b}, \quad \mathbf{A} \mathbf{u}=\lambda \mathbf{u} \tag{1}
\end{equation*}
$$

where \mathbf{A} is a self-adjoint positive definite and bounded linear operator on a tensor product $H_{1} \otimes \cdots \otimes H_{d}$ of Hilbert spaces $H_{\mu}, \mu=1, \ldots, d$. We will study the low-rank approximability of the solution $\mathbf{u} \in H_{1} \otimes \cdots \otimes H_{d}$ in certain tensor network formats, such as the tensor train format [22] (matrix product states [24]) and the hierarchical Tucker

https://daneshyari.com/en/article/6416208

Download Persian Version:

https://daneshyari.com/article/6416208

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: daniel.kressner@epfl.ch (D. Kressner), uschmajew@ins.uni-bonn.de (A. Uschmajew).

