A new eigenvalue inclusion set for tensors and its applications

Chaoqian Li ${ }^{\text {a }}$, Zhen Chen ${ }^{\mathrm{b}, \mathrm{c}}$, Yaotang Li ${ }^{\mathrm{a}, *}$
${ }^{\text {a }}$ School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan, 650091, PR China
${ }^{\text {b }}$ Beijing Computational Science Research Center, Beijing, 100094, PR China
${ }^{\text {c }}$ School of Mathematics and Computer Science, Guizhou Normal University, Guiyang, Guizhou, 550001, PR China

A R T I C L E I N F O

Article history:

Received 23 November 2013
Accepted 19 April 2015
Available online 2 May 2015
Submitted by R. Brualdi

MSC:

15A69
12E05
12E10
Keywords:
Tensor eigenvalue
Nonnegative tensors
Strong M-tensors
Positive definite

A B S TR A C T

A new tensor eigenvalue inclusion set is given, and proved to be tighter than those in L.Q. Qi (2005) [18] and C.Q. Li, Y.T. Li, X. Kong (2014) [12]. In addition, we study the eigenvalues lying on the boundary of the eigenvalue inclusion set provided by Qi (2005) for weakly irreducible tensors. As applications, we give new bounds for the spectral radius of nonnegative tensors, some sufficient conditions for a tensor to be a strong M-tensor and some inequalities to identify the positive definiteness for an even-order real supersymmetric tensor.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We call $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right)$ a complex (real) tensor of order m dimension n, denoted by $\mathcal{A} \in \mathbb{C}^{[m, n]}\left(\mathbb{R}^{[m, n]}\right.$, respectively $)$, if its entries

[^0]$$
a_{i_{1} \cdots i_{m}} \in \mathbb{C}(\mathbb{R}),
$$
where $i_{j}=1, \ldots, n$ for $j=1, \ldots, m$. Obviously, a vector is a tensor of order 1 and a matrix is a tensor of order 2 . Moreover, if there are a complex number λ and a nonzero complex vector $x=\left(x_{1}, \ldots, x_{n}\right)^{T}$ that are solutions of the following homogeneous polynomial equations:
$$
\mathcal{A} x^{m-1}=\lambda x^{[m-1]}
$$
then λ is called an eigenvalue of \mathcal{A} and x an eigenvector of \mathcal{A} associated with λ, where $\mathcal{A} x^{m-1}$ and $x^{[m-1]}$ are vectors, whose i th component is
$$
\left(\mathcal{A} x^{m-1}\right)_{i}=\sum_{i_{2}, \ldots, i_{m} \in N} a_{i i_{2} \cdots i_{m}} x_{i_{2}} \cdots x_{i_{m}}
$$
and
$$
\left(x^{[m-1]}\right)_{i}=x_{i}^{m-1}
$$
respectively. Furthermore, if \mathcal{A} is real and x is a nonzero real vector, then λ is real and we call λ an H -eigenvalue of \mathcal{A} and x an H -eigenvector of \mathcal{A} associated with the H -eigenvalue λ [18]. And the spectral radius $\rho(\mathcal{A})$ of \mathcal{A} is defined as
$$
\rho(\mathcal{A})=\max \{|\lambda|: \lambda \in \sigma(A)\}
$$
where $\sigma(A)$ is the spectrum of \mathcal{A}, that is, the set containing all eigenvalues of \mathcal{A}. We say that \mathcal{A} is nonnegative [11] if \mathcal{A} is real and every of its entries $a_{i_{1} \cdots, i_{m}} \geq 0$. The tensor \mathcal{A} is called supersymmetric $[7,18]$ if
$$
a_{i_{1} \cdots i_{m}}=a_{\pi\left(i_{1} \cdots i_{m}\right)}, \forall \pi \in \Pi_{m},
$$
where Π_{m} is the permutation group of m indices. Let $N=\{1,2, \ldots, n\}$ and $\delta_{i_{1} i_{2} \cdots i_{m}}$ denote the Kronecker symbol for the case of m indices [18], that is, $\delta_{i_{1} i_{2} \cdots i_{m}}=1$ if $i_{1}=\cdots=i_{m}$, otherwise 0 .

Eigenvalue problems of tensors have a wide range of practical applications, such as best-rank one approximation in data analysis [10,20,28], higher order Markov chains [15] and positive definiteness of even-order multivariate forms in automatical control [16], blind source separation [7], magnetic resonance imaging [22,23], molecular conformation [3], etc. Recently, tensor eigenvalues and eigenvectors have received much attention in the literature $[1,8,9,11,15,18-22,25]$.

Due to the nonlinear nature of the eigenvalue problem for tensors, methods in matrix theory cannot be applied directly. However, many important results on the eigenvalue problem of matrices have been successfully extended to higher order tensors; see $[1,2,13$, $15,18,19,21,26,27]$.

https://daneshyari.com/en/article/6416224

Download Persian Version:

https://daneshyari.com/article/6416224

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: liyaotang@ynu.edu.cn (Y.T. Li).

