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In this work, we develop an optimization framework for 
problems whose solutions are well-approximated by Hierar-
chical Tucker (HT) tensors, an efficient structured tensor 
format based on recursive subspace factorizations. By exploit-
ing the smooth manifold structure of these tensors, we 
construct standard optimization algorithms such as Steepest 
Descent and Conjugate Gradient for completing tensors 
from missing entries. Our algorithmic framework is fast and 
scalable to large problem sizes as we do not require SVDs 
on the ambient tensor space, as required by other methods. 
Moreover, we exploit the structure of the Gramian matrices 
associated with the HT format to regularize our problem, 
reducing overfitting for high subsampling ratios. We also find 
that the organization of the tensor can have a major impact 
on completion from realistic seismic acquisition geometries. 
These samplings are far from idealized randomized samplings 
that are usually considered in the literature but are realizable 
in practical scenarios. Using these algorithms, we successfully 
interpolate large-scale seismic data sets and demonstrate the 
competitive computational scaling of our algorithms as the 
problem sizes grow.
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1. Introduction

The matrix completion problem is concerned with interpolating an m ×n matrix from 
a subset of its entries. The amount of recent successes in developing solution techniques 
to this problem is a result of assuming a low-rank model on the 2-D signal of interest 
and a uniform random sampling scheme [9,8,10]. The original signal is recovered by 
promoting low-rank structures subject to data constraints.

Using a similar approach, we consider the problem of interpolating a d-dimensional 
tensor from samples of its entries. That is, we aim to solve,

min
X∈H

1
2‖PΩX − b‖2

2, (1)

where PΩ is a linear operator PΩ : Rn1×n2×...×nd → R
m, b ∈ R

m is our subsampled data 
satisfying b = PΩX∗ for some “solution” tensor X∗ and H is a specific class of low-rank 
tensors to be specified later. Under the assumption that X∗ is well approximated by an 
element in H, our goal is to recover X∗ by solving (1). For concreteness, we concern 
ourselves with the case when PΩ is a restriction operator, i.e.,

PΩX = Xi1,i2,...,id if (i1, i2, . . . , id) ∈ Ω,

and Ω ⊂ [n1] × [n2] × · · · × [nd] is the so-called sampling set, where [n] = {1, . . . , n}. In 
the above equation, we suppose that |Ω| = m � n1n2 . . . nd, so that PΩ is a subsampling 
operator.

Unlike the matrix case, there is no unique notion of rank for tensors, as we shall see 
in Section 1.1, and there are multiple tensor formats that generalize a particular notion 
of separability from the matrix case—i.e., there is no unique extension of the SVD to 
tensors. Although each tensor format can lead to compressible representations of their 
respective class of low-rank signals, the truncation of a general signal to one of these 
formats requires access to the fully sampled tensor X (or at the very least query-based 
access to the tensor [4]) in order to achieve reasonable accuracy, owing to the use of 
truncated SVDs acting on various matricizations of the tensor. As in matrix completion, 
randomized missing entries change the behavior of the singular values and vectors of 
these matricizations and hence of the final approximation. Moreover, when the tensor of 
interest is a discretized continuous signal, there can be a number of constraints, physical 
or otherwise, that limit our ability to ideally sample it. For instance, in the seismic 
case, the tensor of interest is a multi-dimensional wavefield in the earth’s subsurface 
sampled at an array of receivers located at the surface. In real-world seismic experiments, 
budgetary constraints or environmental obstructions can limit both the total amount of 
time available for data acquisition as well as the number and placement of active sources 
and receivers. Many scientific areas, including seismic processing, rely on having fully 
sampled data for drawing accurate inferences and, as a result, tensor completion is an 
important technique for acquiring multidimensional data.



Download English Version:

https://daneshyari.com/en/article/6416232

Download Persian Version:

https://daneshyari.com/article/6416232

Daneshyari.com

https://daneshyari.com/en/article/6416232
https://daneshyari.com/article/6416232
https://daneshyari.com

