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We study the geometry of the secant and tangential variety of 
a cominuscule and minuscule variety, e.g. a Grassmannian or a 
spinor variety. Using methods inspired by statistics we provide 
an explicit local isomorphism with a product of an affine 
space with a variety which is the Zariski closure of the image 
of a map defined by generalized determinants. In particular, 
equations of the secant or tangential variety correspond to 
relations among generalized determinants. We also provide a 
representation theoretic decomposition of cubics in the ideal 
of the secant variety of any Grassmannian.
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1. Introduction

The aim of the article is to investigate the properties of the secant variety of the 
minimal orbit in a minuscule and cominuscule representation of a semisimple complex 
Lie group. The prototypical examples of such varieties are the Grassmannians. The 
Grassmannian of k dimensional subspaces of an n dimensional vector space V is the 
image of the map

{nondegenerate k × n matrices} → P(
k∧
V )

M �→ [all maximal minors of M ].

Moreover, we can parameterize an affine open chart of the Grassmannian by

{k × (n− k) matrices} → A

(n
k

)
−1 ⊂ P(

k∧
V )

M �→ (all minors of M).

In particular, one can consider the Plücker relations that define the Grassmannian, 
as quadratic relations among minors, coming from the Laplace expansion of the deter-
minant.

We generalize these classical observations to the tangential and secant variety, by 
providing analogous local parameterizations. Recall that the tangential variety is the 
union of all tangent lines to the variety, while the secant variety is the Zariski closure 
of the union of the bisecant lines. It turns out that the tangential variety is locally 
isomorphic to a product of an affine space by the Zariski closure of the variety M
parameterized by all minors of degree at least two of a generic matrix. The secant variety 
is locally isomorphic to a product of an affine space by the cone over M . In particular, 
the equations of the tangential (resp. secant) variety correspond to (resp. homogeneous) 
relations among minors of degree at least 2.

Our method is inspired by the “cumulant trick” coming from statistics. Given prob-
ability distributions, the statisticians compute general moments and cumulants. The 
formulas for those were the inspiration to define two triangular automorphisms of the 
affine space. This method has had other successful applications [26,23]. Recently further 
interesting results were obtained in [3].

Furthermore, using generalized determinants, we are able to extend our results to all 
varieties that are both minuscule and cominuscule obtaining our main theorem. In order 
to prove our results we present formulas for the generalized determinants for a sum and a 
generalized Laplace expansion in Lemmas 2.5 and 2.6. The following setting also includes 
the spinor varieties and the two exceptional Hermitian symmetric spaces. The equations 
of the secant and tangential variety correspond to the relations among the Pfaffians.
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